

Student programming contest

Microsoft Development Center Serbia

Problem set & Analysis from

the Finals and Qualification

rounds

Belgrade, 2017

Scientific committee:

Aleksandar Damjanovi Ļ

David Mil iĻeviĻ

Borna Vukorepa

Nikola NedeljkoviĻ

Branko Fulurija

Slavko IvanoviĻ

Ivan DejkoviĻ

Marko Rakita

Janko ġuĢterĢiĽ

MiloĢ KurĢkonja

Predrag IlkiĻ

Nikola SmiljkoviĻ

MiloĢ ġukoviĻ

Ibragim Ismailov

Qualification analysts:

Ivan StoĢiĻ

Vselovod Stepanov

Yuri Shilayaev

Kristijan VeroviĻ

Vladimir MilenkoviĻ

Vladzslav Hlembotskyi

Nikola Herceg

Domagoj Bradac

Michal Seweryn

Balsa Knezevic

Stjepan PoĤgaj

Aleksa Milisavljevi Ļ

Ilija Rackov

Krzysztof Maziarz

Alexander Crustev

Nikolay Zhidkov

Juliusz Straszyœski

Ivan Paljak

Mihajlo Koci Ļ

Mikhail Mayorov

Cover:

Sava ļajetinac

Typesetting:

Monika ļoliĻ

Volume editor:

Dragan TomiĻ

Content s

Preface ... 6

About Bubble Cup ... 7

Bubble Cup finals .. 8

Bubble Cup Finals Results .. 9

Problem A: Digits .. 10

Problem B: Neural Network Country .. 14

Problem C: Property ... 17

Problem D: Exploration plan .. 21

Problem E: Casinos and travel ... 24

Problem F: Product transformation .. 27

Problem G: Bathroom terminal ... 29

Problem H: Bob and stages .. 31

Problem I: Dating .. 34

Qualifications .. 37

Qualification results .. 38

Problem R1 01: Amusement Park ... 39

Problem R1 02: City Major ... 42

Problem R1 03: FFõs Divisors .. 45

Problem R1 04: Game with Psycho ... 47

Problem R1 05: Homework with Fibonacci .. 49

Problem R1 06: I am a Good Sublist ... 51

Problem R1 07: Legend of Heta .. 53

Problem R1 08: Maximum Child Sum ... 56

Problem R1 09: On Tim e .. 58

Problem R1 10: Sauronõs Army .. 61

Problem R2 01: Akame ... 63

Problem R2 02: Arrow .. 66

Problem R2 03: Line Sweep .. 69

Problem R2 04: Mine and Tree .. 71

Problem R2 05: Primitive Pythagorean Pairs ... 75

Problem R2 06: Periodic Function ... 78

Problem R2 07: Traveling Knight .. 83

Problem R2 08: Delivery Game .. 86

Problem R2 09: [Challenge] Lawnmower ... 88

Problem R2 10: Terminus Est ... 91

Preface

Greetings, fellow finalists!

It is my great pleasure to wish you a warm welcome and thank you for taking part in this tenth edition

of the Bubble Cup in Belgrade, Serbia.

Ten years ago, we set off to create a competition which would boost the success of domestic teams at

regional ACM contest in 2008. But, as the years went by, we succeed in transforming the Bubble Cup

into one of the most distinguished international competitions. We are very proud of what we achieved

with the contest and with the community of folks associated with the contest.

This wouldnõt be possible without the students who recognize the Bubble Cup for what it is: a challenging

competition worthy of their energy, knowledge and devotion to coding. In the past ten years, more than

3000 students worldwide have taken part in the Bubble Cup during the 1st and 2nd round and we have

hosted more than 500 finalists here in Belgrade, Serbia.

This year, we broke our previous record of total number of teams competing by amazing 30%. We are

delighted with the number of top teams and amazing coders from Serbia, Croatia, Bulgaria, Poland,

Ukraine, Belorussia and Russia, that decided to compete this year and make this the hardest Bubble Cup

competition yet.

A special place in the Cupõs 10-year long history is reserved for people who have given and are still giving

their all to the Bubble Cup. I would like to give special thanks to all previous Bubble Cup directors and

all the folks who were the members of the Bubble Cup crew. Also, we are extremely grateful to the Bubble

Cup judges who, with their knowledge and enthusiasm, helped elevate the Bubble Cup into what it is

today. Of course, we wonõt stop here. We are going to give our best to make the Bubble Cup more

challenging and to make it a more prestigious coding competition with each new year to come. Microsoft

Development Center Serbia started its operation in 2005 and is one of the most distinguished operations

in Europe. Today it is the place that 200 engineers call home. A considerable number of them were like

you today ð Bubble Cup finalists. This is a competition that may presents a lot of opportunities to young,

ambitious people like yourselves.

The world in which we are living is changing and evolving rapidly. In this fast-changing world coding is

still the most in-demand skill across industries. Without a doubt, 2016 was an amazing year for Machine

Learning (ML) and Artificial Intelligence (AI) where we made some tremendous progress. Every industry

branch is transformed by software today. Therefore, you are the folks that are at the forefront of the

transformation of our society. You are leading the 4th industrial revolution.

Some of you are the rising stars who will transform the world and we are happy to accompany you on

this tiny part of your journey. We hope you had fun, made new friends and experienced the Bubble Cup

10 as a special adventure. Letõs continue to shape the future together. Take the Bubble Cup as an

opportunity to advance your technical knowledge and to build relationships that will last you a lifetime.

Sincerely,

Dragan Tomic

MDCS PARTNER Engineer manager/Director

About Bubble Cup

Bubble Cup is a coding contest started by Microsoft Development Center Serbia in 2008 with a

purpose of creating a local competition similar to the ACM Collegiate Contest, but soon that idea was

overgrown and the vision was expanded to attract talented programmers from the entire region and

promote the values of communication, companionship and teamwork.

The format of the competition h as remained the same this year. All competitors battled for the place

in finals during two qualifications rounds. Top high school and university teams were invited to the

finals in Belgrade, where they competed in the traditional five-hour long contest.

All Bubble Cup finalists had a chance to hear about PSI:ML machine learning seminar where they can

meet people interested in machine learning, learn and work on projects alongside industry expert

from the field.

Micr osoft Development Center Serbia (MDCS) was created with a mission to take an active part in

the conception of novel Microsoft technologies by hiring unique local talent from Serbia and the

region. Our teams contribute components to some of the Microsoftõs premier and most innovative

products such as SQL Server, Office & Bing. The whole effort started in 2005, and during the last 12

years a vast number of products came out as a result of a great team work and effort.

Our development center is becoming widely recognized across Microsoft as a center of excellence for

the following domains: computational algebra engines, pattern recognition, object classification,

computational geometry and core database systems. The common theme uniting all the efforts within

the development center is applied mathematics. MDCS teams maintain collaboration with engineers

from various Microsoft development centers around the world (Redmond, Israel, India, Ireland, Japan

and China), and Microsoft researchers from Redmond, Cambridge and Asia.

http://psiml.petlja.org/

Bubble Cup finals

The Bubble Cup X Finals were held on September 2, 2017, at the Belgrade Youth Center (Dom

Omladine Beograd) in Belgrade. Marko Panic who was the coordinator at the very first Bubble

Cup was now the moderator of the Opening Ceremony and he welcomed both the finalists and

guests and called on the speakers to greet them too.

Dragan Tomic presented how Bubble Cup started 10 years ago, and where we are now. He talked

about MDCS partnership with the industry, academia and official institutions and how only

together we could contribute to the society. A few short speeches were given by: Ms. Tanja Matic,

the State Secretary at the Ministry of Trade, Tourism and Telecommunications, Ms. Katarina

Aleksic, the Advisor to the Minister of Education, Science and Technological Development. Mr.

Nebojsa Vasiljevic, the director of the Petlja Foundation and the professor Filip Maric held the

presentation on how the portal Petlja.org works and how kids and professors can use the

interactive materials for learning coding in elementary schools.

Competition started at 11.30am and lasted till 4.30pm. In the evening, at Dom Omladine Beograd,

the award ceremony was held and was later followed by the lounge party organized to honor all

the participants.

This is the 10th anniversary edition of the Bubble Cup and we are extremely happy to see an

increase in the number of teams that surpassed our expectations. We were so pleased with the

number of top teams and red coders that we decided to outdo oursel ves this year and make it

the toughest Bubble Cup competition to date. Because of that we decided to make an exception

and invite 22 teams to the finals, breaking our traditional 20 teams total number. On the other

hand, we didnõt change the length of the competition which remained in the classical ACM ICPC

five-hour format. The university and high school students competed in the same category. Bubble

Cup prizes were given to not only to the top 3 overall teams, but also to the teams which were

the top 3 in their respective categories.

Since the scoreboard froze there were a lot of changes in the standings and one submission could

make the difference between winning one of the first three main prizes or going home empty

handed. After starting slowly the Los Estribos team (Mateusz Radecki, Maciej Holubowicz, Jan

Tabaszewski) ended up victorious and the only team to solve the Bob And Stages problem.The

Jagiellonian Armadillos (Vladyslav Hlembotskyi, Michal Seweryn, Krzysztof Maziarz) were

leading for a long time but in the end they finished in the second place. The biggest change in

the freeze time, however, was made by the Cheeks (Nikolay Zhiidkov, Petr Smirnov, Vsevolod

Stepanov) team that went from 4 solved problems to 7 and grabbed 3 rd overall place as the only

team with 7 points. In the end , penalty points didnõt matter for the first three places as all three

teams had unique number of solved problems .

http://bubblecup.org/CompetitorsCorner/TeamResults/200

Bubble Cup Finals Results

 Problem A: Digits

Author:

Borna Vukorepa

Implementation and analysis:

Borna Vukorepa

Aleksandar Damjanovi Ļ

Statement :

John gave Jack a very hard problem. He wrote a very big positive integer ὃ on a piece of paper. The

number is less than ρπ . In each step, Jack is allowed to put '+' signs in between some of the

digits (maybe none) of the current number and calculate the sum of the expression. He can perform

the same procedure on that sum and so on. The resulting sums can be labeled respectively by ὃȟὃ

etc. His task is to get to a single digit number.

The problem is that there is not much blank space on the paper. There are only three lines of space,

so he can't perform more than three steps. Since he wants to fill up the paper completely, he will

perform exactly three steps.

Jack must not add leading zeros to intermediate results, but he can put '+' signs in front of digit π. For

example, if the current number is ρπππρππ, ρπππρππ is a valid step, resulting in number ρρ.

Input :

In the first line, a positive integer ὔ, representing the number of digits of number ὃ.

In the second line, a string of length ὔ representing number ὃ. Each character is a digit. There will be

no leading zeros.

Output :

Output exactly three lines, the steps Jack needs to perform to solve the problem. You can output any

sequence of steps which results in a single digit number (and is logically consistent).

Constraints :

¶ ρ ὔ ςππ πππ

Example input 1: Example input 2: Example input 3:

2 3 4

10 992 1234

Example output 1: Example output 2: Example output 3:

10 99+2 123+4

1+0 1+01 1+2+7

1 2 1+0

Explanation:

Example 1: In the first step, we use zero '+' signs, so ὃ ρπ. In the second step, we place a '+' sign

between ρ and π, so ὃ ρ π ρ. In the third step, we don't need to (and we can't) put any '+'

signs, so we get ὃ ρ.

Example 2: In the first step, we only put a '+' between the last two digits, so we get ὃ ωως ρπρ.

In the second step, we place the only '+' sign between the first and t he second digit, so ὃ ρ πρ

ρ ρ ς. In the third step, we don't need to (and we can't) put any '+' signs, so we get ὃ ς.

Example 3: In the first step, we use a '+' sign between the last two digits, so ὃ ρςστ ρςχ. On

the second step, we place a '+' sign between every two digits, so ὃ ρ ς χ ρπ. In the third

step, we place a '+' sign between ρ and π, so ὃ ρ π ρ.

Time and memory limit: 1s/ 128MB

Solution and analysis :

Let Ὠίὼ be the sum of digits of the number ὼ.

Notice that if Ὠίὃ ρωψ, then ὨίὨίὨίὃ is a single digit number, therefore we have solved

the case Ὠίὃ ρωψ.

After a little more thinking, we can extend it to Ὠίὃ ςψψ, because ςψω is the smallest number

which can't be reduced to a single digit number in at most two steps. This is because number ρωω can

be transformed to single digit in 2 steps by using following transformations ρ ωω, ρ π π. Now

we know how to solve Ὠίὃ ςψψ. Now we will solve ςψψ Ὠίὃ ωωω.

Let ὃ ὥὥȢȢȢὥ ὥ be the decimal representation of ὃ.

Consider:

ὢ ὥὥ ὥὥ ȢȢȢ ὥ ὥ

ὣ ὥ ὥὥ ȢȢȢ ὥ ὥ ὥ

(this is for an odd ὲ, the following r esults would be the same with an even ὲ).

Now look at: ὢ ὣ ρρὨίὃ ωὥ. (this is easy to be seen by addition).

Since Ὠίὃ ςψψ, we have ὢ ὣ ρπὨίὃ . Thus, we trivially conclude that for example: ὢ

 υὨίὃ .

That means that ὢ ρπππ. Now look at the following sequence of numbers:

ὥ ὥ ὥ ὥ ȢȢȢ ὥ ὥȟ

ὥὥ ὥ ὥ ȢȢȢ ὥ ὥȟ

ὥὥ ὥὥ ȢȢȢ ὥ ὥȟ

ȣȟ

ὢ ὥὥ ὥὥ ȢȢȢ ὥ ὥ Ȣ

It is increasing, and the first element has σ digits, the last has at least τ, so the number of digits has

increased at some point. Since the numbers in the sequence are increasing by at most ψρ (trivial check),

the sequence element, when digit skipping occurred , is at most ρπψπ. Thus, our first step is to put '+'

signs as they are in that sequence element. After that, we apply Ὠί two more times and we will be

done (trivial check).

Now we solve Ὠίὃ ρπππ.

Consider:

ὢ ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥ

ὣ ὥ ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥ ὥ ὥ

ὤ ὥ ὥ ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥ ὥȢ

(this is for the ὲ of the form ὲ σὯ ς, the following results would be the same with the other ὲ)

As before, we can easily see that ὢ ὣ ὤ ωψὨίὃ (ωπὨίὃ is enough), so, for example, ὢ

 σπὨίὃ .

Now look at the following sequence of numbers:

ὥ ὥ ὥ ὥ ȢȢȢ ὥ ὥȟ

ὥὥὥ ὥ ὥ ȢȢȢ ὥ ὥȟ

ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥȟ

ȣȟ

ὢ ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥ

It is increasing and since the first number is Ὠίὃ and the last one is at least σπὨίὃ , the digit

skipping occurred somewhere.

Let ὓ ὥὥὥ ὥὥὥ ȢȢȢ ὥ ὥ ὥ ὥ Ễ ὥ ὥ ὥ be the sequence

element right before the digit skipping occurred. Therefore, it is less than ρπὨίὃ and at most ωωω

away from power of ρπ. Now we continue by 'steps of two', so the next element is:

ὥὥὥ ὥὥὥ ȢȢȢ ὥὥ ὥ ὥ ὥ ὥ Ễ ὥ ὥ ὥ ,

and the next one:

ὥὥὥ ὥὥὥ ȢȢȢ ὥὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ Ễ

 ὥ ὥ ὥ ,

Remember that ὓ ρπὨίὃ . Since ὢ σπὨίὃ , if we continued making steps of three, we

would increase our number by at least ςπὨίὃ before the end of the procedure. Our steps are steps

of two, and each step increases the number by at least ρȾρρ of what it would be increased by if we

were making steps of three (trivial check). Thus, before the end of our procedure, we will increase M

by more than Ὠίὃ . Since Ὠίὃ ρπππ, and remember that ὓ was at most ωωω less than the power

of ρπ, the digit skipping will indeed occur.

We thus reach the similar situation as in the previous case and we know what our first step is. We only

need to apply Ὠί two more times after that.

 Problem B : Neural Network Country

Author:

Nikola NedeljkoviĻ

Implementation and analysis:

Janko ġuĢterĢiĽ

 Nikola NedeljkoviĻ

Statement:

Due to the recent popularity of the Deep learning new countries are starting to look like Neural

Networks. That is, the countries are being built deep with many layers, each layer possibly having many

cities. They also have one entry, and one exit point. There are exactly ὒ layers, each having ὔ cities. Let

us look at the two adjacent layers ὒ and ὒ. Each city from the layer ὒ is connected to each city from

the layer ὒ with the travelling cost ὧ ÆÏÒ ὭȟὮɴ ρȟςȟȢȢȟὔ , and each pair of adjacent layers has the

same cost in between their cities as any other pair (they just stacked the same layers, as usual). Also,

the travelling costs to each city from the layer ὒ are same for all cities in the ὒȟ that is ὧ is the same

for Ὥɴ ρȟςȟȢȢȟὔȟ and fixed Ὦ. Doctor G. needs to speed up his computations for this country so he

asks you to find the number of paths he can take from entry to exit point such that his travelling cost

is divisible by given number ὓ.

Input:

The first line of input contains ὔ ð the number of cities in each layer, ὒ ð the number of layers, and ὓ.

Second, third and fourth line contain ὔ integers denoting costs from entry point to the first layer, costs

between adjacent layers as described above, and costs from the last layer to the exit point.

Output:

Output a single integer, the number of paths Doctor G. can take which have total cost divisible by ὓȟ

modulo ρπ χȢ

Example input: Example output:

2 3 13

4 6

2 1

3 4

2

Example explanation:

This is a country with σ layers, each layer having 2 cities. Paths φO ςO ςO σ, and φO ςO ρO τ are

the only paths having total cost divisible by 13. Notice that input edges for layer cities have the same

cost, and that they are same for all layers.

Constraints:

¶ ρ ὔ ρπ

¶ ς ὒ ρπ

¶ ς ὓ ρππ

¶ π ὧέίὸίὓ

Time and memory limit: 2s / 256 MB

Solution and analysis:

Letõs ignore constraints for a second and try to solve the problem using a classical dynamic approach.

We can easily see that if we know in how many ways we can reach some layer for every modulo up to

ὓ, we can simply calculate number of ways we can reach the next layer for every modulo by iterating

over weights in ὕὔȢ That means we have matrix Ὀὴ , where ὈὴὭὮ is equal to the number of

roads up to Ὥ-th layer whose total cost is equal to Ὦ modulo ά. The transition between the layers is

calculated as follows:

ὈὴὭὮ ὈὴὭ ρ Ὦ ύὯ άέὨ ὓȟ

where ύ is a zero-base indexed array of weights between the layers. Given the array of costs between

the starting point and the first layer, ὥ, the base is calculated as ὈὴπὥὯ ρ, for every Ὧ from π

to ὔ ρ. The last layer is a bit tricky. In order to calculate the final result, we need to know not only

ὈὴὒπȢȢὔ ρ, but also which of those roads end in which nodes. We can achieve that by calculating

Ὀὴ up to the layer ὒ ρ, and computing the last step manually, by òmergingó the costs of the last two

sets of edges, by simply adding ύὭ and ὦὭ, where ὦ is the array of edge costs between the last layer

and the finish point, for every Ὥ from π to ὔ ρ, and outputting the following result modulo ὗ:

ὶὩί Ὀὴὒ ρ ύὭ ὦὭ άέὨ ὓȟ

giving the overall time complexity of ὕὒϽὔϽὓ , and memory complexity of ὕὒϽὓ , both of them

exceeding the given limits. Of course, memory is not a problem if we see that we need not to save the

whole matrix, but only the last column.

We will reduce time complexity step by step. If we notice that it doesnõt matter in which node we are

currently in (except in the last step), we can speed up the computation by saving the number of

occurrences of each ύὭ modulo ὓ into an array ὲόάὭ. Now Ὀὴ matrix is calculated in ὕὒϽὓ

using formula:

ὈὴὭὮ ὲόάὯϽὈὴὭ ρ Ὦ Ὧ άέὨ ὓȢ

Now, a keen eye can spot multiplication of a matrix and a vector by looking at this formula. Indeed,

we can compute a transition matrix of dimensions ὓ ὓ which, multiplied by a vector of the current

state (number of roads which have the total cost Ὥ πȢȢὓ ρ, modulo ὓ up to some layer), gives us

the next state vector, corresponding to the next layer, resulting in time complexity ὕὓ ϽÌÏÇὒ, using

modular matrix exponentiation. The last layer still has to be treated separately, in the same way as

described before.

 Problem C: Property

Author:

Aleksandar Damjanovi Ļ

Slavko IvanoviĻ

Implementation and analysis:

Aleksand ar Damjanovi Ļ

Slavko IvanoviĻ

Statement :

Bill is a famous matematician in BubbleLand. Thanks to his revolutionary math discoveries he was able

to make enough money to build a beautiful house. Unfortunately, for not paying property tax on time,

court decided to punish Bill by making him lose a part of his property.

Billõs property can be observed as a convex regular ςὲ-sided polygon ὃὃȣὃ ὃ ȟὃ ὃ

with sides of the exactly ρ meter in length.

Court rules for removing part of his property are as follows:

¶ Split every edge ὃὃ ȟὯ πȢȢȢςὲ ρ in ὲ equal parts of size with points ὖȟὖȟȣὖ

¶ On every edge ὃ ὃ ȟὯ πȢȢȢὲ ρ court will choose one point ὄ ὖ for some Ὥ

πȟȣȟὲ ρ such that ẕ ὄ ẕ ὖ

¶ On every edge ὃ ὃ ȟὯ πȢȢȢὲ ρ Bill will choose one point ὄ ὖ for some Ὥ

πȟȣȟὲ ρ such that ẕ ὄ ẕ ὖ

¶ Bill gets to keep property inside of ςὲ-sided polygon ὄὄȣὄ

Luckily, Bill found out all ὄ points the court chose. Even though he is a great mathematician, his

house is very big and he has a hard time calculating. Therefore, he is asking you to help him choose

points in order to maximize his property area.

Input:

The first line contains one integer number n representing number of edges of Bill's ςὲ-sided polygon

house.

The second line contains ὲ distinct integer numbers ὄ ȟὯ πȢȢȢὲ ρȟ separated by a single space,

representing points the court chose. If ὄ Ὥ, the court chose point ὖ on side ὃ ὃ .

Output:

Output contains ὲ distinct numbers separeated by a single space representing points Bill shoud

choose in order to maximize the property area. If there are multiple solutions that maximize the area,

return any solution which maximizes the area.

Constraints:

¶ ς ὲ υπ πππ

¶ π ὄ ὲ ρȟὯ πȣὲ ρ

¶ ẕ ὄ πȟρȟςȟȣὲ ρ

Example input :

3

0 1 2

Example output :

0 2 1

Explanation:

Court chose points ὄ ὖ, ὄ ὖ and ὄ ὖ as described in the image below. If Bill chooses points

ὄ ὖ, ὄ ὖ and ὄ ὖ he will achieve the maximum area as shown in the image below:

On the other hand, if Bill chooses points ὄ ὖ, ὄ ὖ and ὄ ὖ, the area of his green property

will be smaller:

Time and memory limit: 0.5s / 128 MB

Solution and analysis :

Letõs first figure out what is the easiest way to calculate the area of the ὄὄȣὄ .

We can easily determine the area of of ὄὄȣὄ polygon by subtracting a purple triangle area

from the initial ὃὃȣὃ polygon (Figure 1).

Figure 1

Determining the maximum polygon area ὄὄȣὄ we can achieve is equivalent to determining

the minimum purple triangle area we can achieve, which is a much easier task.

Letõs say the court chose points ὄ and ὄ (Figure 1). We now need to determine our point ὢ

 ὄ to minimize sums of areas ὖ and ὖ.

ὖ ὖ
ὃ ὢ zὄ ὅ

ς

ὢὃ zὄ ὅ

ς

ὖ ὖ
ὼz ὄ ὅ

ς

ί ὼ ὄz ὅ

ς

ὖ ὖ
ίz ὄ ὅ

ς

ὼz ὄ ὅ ὄ ὅ

ς

ὖ ὖ ὧέὲίὸ
ὼz Ὤ Ὤ

ς

Therefore, to minimize the total triangle area, we need to choose right ὼ for Ὤ Ὤ . Because our

points represent a permutation of ὖȟὖȟȣȟὖ , best way to choose points will be to take minimum

ὼ when Ὤ Ὤ is maximal, and maximum ὼ, when Ὤ Ὤ is minimal.

Writing algorithm is now e asy. For polygon create the array ὨὭὪὪὬὯ = (Ὤ Ὤ ȟὯ, sort it in an

ascending order and give to ίέὶὸὩὨὈὭὪὪὬὯȢὩὨὫὩ point ὖ .

The overall algorithm complexity is ὕὔὰέὫὔ.

 Problem D : Exploration pla n

Author:

Branko Fulurija

Implementation and analysis:

Branko Fulurija

Ivan Dejkovi Ļ

Statement:

The competitors of Bubble Cup X gathered after the competition and discussed what is the best way

to get to know the host country and its cities.

After exploring the map of Serbia for a while, the competitors came up with the following facts: the

country has ὠ cities which are indexed with numbers from 1 to ὠ, and there are Ὁ bi-directional roads

that connect the cites. Each road has a weight (the time n eeded to cross that road). There are ὔ teams

at the Bubble Cup and the competitors came up with the following plan: each of the ὔ teams will start

their journey in one of the ὠ cities, and some of the teams share the starting position.

They want to find the shortest time Ὕ, such that every team can move in these Ὕ minutes, and the

number of different cities they end up in is at least ὑ (because they will only get to know the cities

they end up in). A team doesn't have to be on the move all the time, if they like it in a particular city,

they can stay there and wait for the time to pass.

Please help the competitors to determine the shortest time Ὕ so it's possible for them to end up in at

least ὑ different cities or print -1 if that is impossible no matter how they move.

Note that there could exist multiple roads between some cities.

Input :

The first line contains four integers: ὠȟὉȟὔ and ὑ, the number of cities, the number of roads, the

number of teams and the smallest number of different citie s they need to end up in. The second line

contains ὔ integers, the cities where the teams start their journey. The next Ὁ lines contain information

about the roads in following format: ὃ ὄ Ὕȟ which means that there is a road connecting cities ὃ

and ὄ, and you need Ὕ minutes to cross that road.

Output :

Output a single integer that represents the minimal time the teams can move for, such that they end

up in at least ὑ different cities or output -1 if there is no solution .

Example input: Example output:

6 7 5 4

5 5 2 2 5

1 3 3

1 5 2

1 6 5

2 5 4

2 6 7

3 4 11

3 5 3

3

Example explanation:

Three teams start from city 5, and two teams start from city 2. If they agree to move for 3 minutes,

one possible situation would be the following: Two teams in city 2, one team in city 5, one team in city

3 , and one team in city 1. And we see that there are four different cities the teams end their journey

at.

Constraints:

¶ ρ ὠ φππ

¶ ρ Ὁ ςπ πππ

¶ ρ ὔ ςππ

¶ ρ ὑ ὔ

¶ ρ ὃὭȟὄὭὠ

¶ ρ ὝὭρπ πππ

¶ The result will be no greater than 1731311 if the solution exists

Time and memory limit: 2s / 256 MB

Solution and analysis:

The first step we should do is to precompute the All -pairs shortest path table. We can do this with

Dijkstraõs algorithm from every node in time ὕ(ὠ2ὰέὫὉ) or with Floyd Warshall in time ὕ(ὠ3).

The next step is to notice that we can use a binary search to find the answer, because if the teams end

up in at least ὑ cities in some time Ὕ, they can do that in every greater time (they can just remain in

the same cities as in the time Ὕ).

The final step to our solution is to create a function ὦέέὰ ὧὥὲ(Ὥὲὸ Ὕ), that for some time Ὕ, which we

guess in our binary search, tells if the requirements are met (at least ὑ different cities). This can be

solved as follows: We will create a bipartite graph, where on the left side we have every starting city

of our teams and on the right side the remaining cities. Then for every starting city on the left, we will

create an edge to every city on the right that can be reached within time Ὕ (here we use our APSP

table). Now for some fixed time Ὕ, we have a bipartite graph with starting cities on the left, that have

an edge to every city they can reach within time Ὕ. After we have this graph, itõs not hard to see that

we now have a maximum bipartite matching problem. We just have to check whether the MBP is

greater than or equal to ὑ. Our bipartite graph will have at most ὔ vertices on the left, and at most

ὔὠ edges, so if we use Ford Fulkerson algorithm for matching the time complexity of this part will be

ὕ(ὔ2ὠ).

The total time complexity is: ὕ(ὠ2logὉ ὔ2ὠ ὰέὫ(maxAnswer))

 Problem E: Casinos and tra vel

Author:

Borna Vukorepa

Implementation and analysis:

Borna Vukorepa

Predrag Ilki Ļ

Statement :

John has just bought a new car and is planning a journey around the country. Country has ὔ cities,

some of which are connected by bidirectional roads. There are ὔ ρ roads and every city is reachable

from any other city. Cities are labeled from ρ to ὔ.

John first has to select from which city he will start his journey. After that, he spends one day in a city

and then travels to a randomly choosen city which is directly connected to his current one and which

he has not yet visited. He does this until he can't continue obeying these rules.

To select the starting city, he calls his friend Jack for advice. Jack is also starting a big casino business

and wants to open casinos in some of the cities (max ρ per city, maybe nowhere). Jack knows John

well and he knows that if he visits a city with a casino, he will gamble exactly once before continuing

his journey.

He also knows that if John enters a casino in a good mood, he will leave it in a bad mood and vice

versa. Since he is John's friend, he wants him to be in a good mood at the moment when he finishes

his journey. John is in a good mood before starting the journey.

In how many ways can Jack select a starting city for John and cities where he will build casinos such

that no matter how John travels, he will be in a good mood at the end? Print answer άέὨ ρπ χ.

Input :

In the first line, a positive integer ὔ, the number of cities.

In the next ὔ ρ lines, two numbers ὥȟὦ separated by a single space meaning that cities ὥ and ὦ are

connected by a bidirectional road.

Output :

Output one number : the number of ways Jack can make his selection άέὨ ρπ χȢ

Constraints :

¶ ρ ὔ ςππ πππ

¶ ρ ὥȟὦ ὔ

Example input 1: Example input 2:

2 3

1 2 1 2

 2 3

Example output 1: Example output 2:

4 10

Example 1 explanation:

If Jack selects city ρ as John's starting city, he can either build π casinos, so John will be happy all the

time, or build a casino in both cities, so John would visit a casino in city ρ, become unhappy, then go

to city ς, visit a casino there and become happy and his journey ends there because he can't go back

to city ρ. If Jack selects city ς for start, everything is symmetrical, so the answer is τ.

Example 2 explanation:

If Jack tells John to start from city ρ, he can either build casinos in π or ς cities (total τ possibilities). If

he tells him to start from city 2, then John's journey will either contain cities ς and ρ or ς and σ.

Therefore, Jack will either have to build no casinos, or build them in all three cities. With other options,

he risks John ending his journey unhappy. Starting from σ is symmetric to starting from 1, so in total

we have τ ς τ ρπ options.

Time and memory limit: 1 s / 256 MB

Solution and analysis:

After examining the problem, it is easy to see that the statement can be reduced to:

Given a tree, in how many ways can you select a root and color every node black or white such that

all paths from root to any leaf node (except the root) have even number of black nodes.

Assume we have selected a root and color the tree arbitrarily. Select any path from root to some leaf.

Notice that whatever the number of black nodes is on this path, the parity can be adjusted by changing

the color of the corresponding leaf if needed. Therefore, for every path mentioned in the problem, its

parity is ultimately determined by the leaf node color and all the other nodes can be colored in any

way. Therefore, the number of colorings for a fixed root is ς ȿ ȿ. We only need to count, for every

root, how many leaves are there. That is easy. If a root is a leaf itself, the number of leaves of such

rooted tree is the number of leaves of our unrooted tree, minus the root, otherwise it is just the number

of leaves of the unrooted tree.

The explicit formula is (ὔ is the number of nodes and ὒ the number of leaves in the rooted tree):

Ὓ ὒz ς ὔ ὒ ςz

 Problem F: Product transformation

Author:

Nikola Nedeljkovi Ļ

Implementation and analysis:

Janko ġuĢterĢiĽ

 Nikola NedeljkoviĻ

Statement:

Consider an array ὃ with ὔ elements, all being the same number ὥ. Define the product transformation

as a simultaneous update ὃ ὃ ὃz ȟ that is multiplying each element to the element right to it

for Ὥɴ ρȟςȟȢȢȟὔ ρ, with the last number ὃ remaining the same. For example, if we start with an

array ὃ with ὥ ς and ὔ τ after one product transformation ὃ τȟτȟτȟς, and after two product

transformations ὃ ρφȟρφȟψȟς. Your simple task is to calculate the array ὃ after ὓ product

transformations. Since the numbers can get quite big you should output them modulo ὗ.

Input:

The first and only line of input contains four integers ὔȟὓȟὥȟὗ.

Output:

You should output the array ὃ from left to right, space separated.

Constraints:

¶ χ ὗ ρπ ρςσ

¶ The multiplicative order of a number ὥ modulo ὗȟהÁȟ1 is prime.

¶ ρ ὓȟὔ Áȟ1ה ρπ ρςσ

¶ ς ὥ ρπ ρςσ

Example input: Example output:

2 2 2 7 1 2

Example explanation:

After 2 transformations ὃ ψȟς άέὨ χ ρȟς.

Time and memory limit: 2 s / 64 MB

Note:

The multiplicative order of a number ὥ modulo ὗ הÁȟ1ȟ is the smallest natural number ὼ such that

ὥάέὨ ὗ ρȢ For exampleȟהςȟχ σ.

Solution and analysis:

For example, letõs consider an array ὃ ὥȟὥȟὥȟὥȟὥȟὔ υȢ After four product transformations that

array becomes ὃ ὥ ȟὥ ȟὥ ȟὥȟὥ. By writing only one example, one cannot see the pattern that

easily. If we write out multiple examples for different ὓᴂί, we might notice that the differences of

exponents have somewhat familiar structure. In this case, written from left to right, we have ρ τ φ τ,

and that resembles binomials, right? Indeed, it is not hard to prove mathematically, relying on

recurrent formula ὅ ὅ ὅ , that after ὓ product transformations Ὥ-th element of zero-base

indexed array ὃ is:

ὃ ὥ Ễ .

Given that the multiplicative order of number ὥ modulo ὗȟὴ Áȟ1 is prime, we can speed up theה

computation by using Sieve of Eratosthenes for finding primes in ὕὴϽÌÏÇÌÏÇὴ, and asking if

ὥ άέὨ ὗ ρ in ὕÌÏÇ ὼ. If we approximate the prime-counting function “ὼ with “ὼ , it

gives us an overall complexity of ὕὴ ὴϽÌÏÇÌÏÇὴ which is a bit faster than a solution which doesnõt

use Sieve of Eratosthenes, which runs in ὕὴϽÌÏÇὴ with a big multiplicative constant, knowing that

calculating modulus is expensive.

Now, let us denote Ὀ ὅ ὅ Ễ ὅ , for simplicity. Given the number ὴ which we have

previously determined as ὴ :Áȟ1, it standsה

ὥ άέὨ ὗ ὥ άέὨ ὗ.

Since ὴ is also a prime number, we can find each ὅ in ὕρ if we precompute all factorials and their

inverses up to ὔ (which can be done in ὕὔϽÌÏÇὔȟ given that ὴ is prime and bigger than ὔ, as stated

in the constraints). Now we can find all Ὀᴂί easily, in linear time. We also do a standard modular

exponentiation algorit hm to output final result in each iteration, yielding total complexity of

ὕὴϽÌÏÇÌÏÇὴ ὔϽÌÏÇὔ ὔϽÌÏÇὴ.

 Problem G: Bathroom terminal

Author:

Aleksandar DamjanoviĻ

Implementation and analysis:

MiloĢ ġukoviĻ

MiloĢ KruĢkonja

Statement:

Smith wakes up at the side of a dirty, disused bathroom, his ankle chained to pipes. Next to him is

tape-player with a hand-written message òPlay Meó. He finds a tape in his own back pocket. After

putting the tape in the tape -player, he sees a key hanging from a ceiling, chained to some kind of a

machine, which is connected to the terminal next to him. After pressing a Play button a rough voice

starts playing from the tape:

òListen up Smith. As you can see, you are in pretty tough situation and in order to escape, you have

to solve a puzzle.

You are given ὔ strings which represent words. Each word is of the maximum length ὒ and consists

of characters 'a'-'e'. You are also given ὓ strings which represent patterns.

Pattern is a string of length ὒ and consists of characters 'a'-'e' as well as the maximum σ characters

ᴂȩᴂ. Character ᴂȩᴂ is an unknown character, meaning it can be equal to any character 'a'-'e', or even an

empty character.

For each pattern find the number of words that matches with the g iven pattern. After solving it and

typing the result in the terminal, the key will drop from the ceiling and you may escape.

Let the game begin.ó

Help Smith escape.

Input:

The first line of input contains two integers ὔ and ὓ, representing the number of words and patterns

respectively. The next ὔ lines represent each word, and after those ὔ lines, following ὓ lines represent

each pattern.

Output:

Output contains ὓ lines and each line consists of one integer, representing the number of words that

match the corresponding pattern.

Constraints:

¶ ρ ὔ ρππ πππ

¶ ρ ὓ υπππ

¶ π ὒ υπ

Example input: Example output:

3 1

abc

aec

ac

a?c

3

Example explanation:

If we switch '?' with 'b', 'e' and with empty character, we get 'abc', 'aec' and 'ac' respectively.

Time and memory limit: 2s / 256 MB

Solution and analysis:

Let's first put all given words in trie of maximum depth ὒ in ὕὔ ὒz time. Once this is done every

node in the trie will contain how many words end at that node.

Now for each pattern we need to check how many words inside the trie satisfy the pattern. For every

character 'a'-'e' in pattern we iterate though trie character by character. When we reach '?' we need to

recursively sum the count of all possible letter choices, by this you have to recursively process all

children of the current trie node, by continuing iteration. For the empty character, you have to stay at

current trie node, but process the next character in the pattern, also beware of patterns with multiple

consecutive '?' such as 'a???b' or 'a??' and patterns like '?aaaa?', with same caracters between two '? ',

because while searching the trie, you may find same words multiple times. To solve this, for each

pattern make a set of trie node pointers, which point to end nodes of fo und words for current pattern,

so when you find a word next time, first check if the word is in the set, before counting it.

As there can be maximum 3 '?' character in a pattern, calculating how many strings in a trie satisfy a

pattern will be performed ὕυͮσz ὓ ὒz.

Also there is a bit slower solution. Use lexicographic sort on input words, generate all possible words

from every pattern, and search every generated word in the sorted word vector. This solution is slower

by O(logN).

 Problem H : Bob and stages

Author:

Aleksandar Damjanovi Ļ

Ivan DejkoviĻ

Implementation and analysis:

Ivan DejkoviĻ

Slavko Ivanovi Ļ

Statement:

The citizens of BubbleLand are celebrating thier 10th anniversary so they decided to organize a big

music festival. Bob got a task to invite ὔ famous singers who would sing on the fest. He was too busy

placing stages for their performances that he totally forgot to write the invitation e -mails on time, and

unfortunately he only found ὑ available singers. Now there are more stages than singers leaving some

of the stages empty. Bob would not like if citizens of BubbleLand noticed empty stages and found out

that he was irresponsible.

Because of that he decided to choose exactly ὑ stages that form a convex set, make large posters as

edges of that convex set and hold festival inside. While those large posters will make it impossible for

citizens to see empty stages outside Bob still needs to make sure they don't see any of the empty

stages inside that area

Since lots of people are coming, he would like that the festival area is as large as possible. Help him

calculate the maximum area that he could obtain respecting the conditions. If there is no such area,

the festival cannot be organized and the answer is 0.00.

Input:

The first line of input contains two integers ὔ and ὑ, separated with one empty space, representing

number of stages and number of singers, respectively. Each of the next ὔ lines contains two integers

ὢ and ὣ, representing the coordinates of the stages.

Output:

Output contains only one line with one number, rounded to two decimal points: the maximal festival

area.

Example input: Example output:

5 4

0 0

3 0

2 1

4 4

1 5

10.00

Example explanation:

From all possible convex polygon with 4 vertices and no other vertex inside, the largest is one with

points (0, 0), (2, 1), (4, 4) and (1, 5).

Constraints:

¶ σ ὔ ρπππ

¶ σ ὑ άὭὲὔȟυπ

¶ π ὢὭȟὣὭρπ

¶ There are no three or more collinear points

Time and memory limit: 2s / 256 MB

Solution and analysis:

For each point ὴ from the given points we will find the maximal area of all convex ὑ-gons which have

ὴ as leftmost vertex. After setting point ὴ and removing all points to the left of ὴ, we sort the rest of

the points by angle around ὴ. If we connect the points in the order they are sorted in, and the first

and the last point with ὴ, we get a star-shaped polygon ὖ. Each convex polygon that has ὴ as leftmost

vertex must lie inside ὖ. Next, we compute the visibility graph ὠὋ in such a polygon and use dynamic

programming to find the polygon with maximum area.

We will construct the visibility graph during one counter -clockwise scan around the polygon. Let's say

that we have ὓ points in ὖ different from ὴ. We wonõt include point ὴ in visibility graph. When we

visit ὴ we construct all incoming edges of ὴ. With each vertex ὴ we maintain a queue ὗ that stores

the starting points of some of the incoming edges of ὴ in counter-clockwise order. It contains those

points ὴ such that ὮὭ is an edge of the visibility graph and we have not yet reached another point ὴ

with Ὧ Ὥ such that ὮὯ is an edge of the visibility graph. The following pseudo code describes the

algorithm for computing the visibility graph in a star -shaped polygon.

procedure CreateVisibilityGraph

 for Ὥ := 1 to ὓ do ὗ := ɲend

 for Ὥ := 1 to ὓ - 1 do Proceed(Ὥ, Ὥ + 1) end

procedure Proceed(Ὥ, Ὦ)

 while ὗÍ ɲand IsLeftTurn(Front(ὗ)Ὥ, ὭὮ) do

 Proceed (FRONT(ὗ), Ὦ)

 Pop(ὗ)

 end

 Connect(Ὥ, Ὦ)

 Push(Ὥ, ὗ)

Time complexity for computing visibility graph is ὕ(|ὠὋ|) since every call of the Proceed adds one edge

to the ὠὋ.

Next, we will use dynamic programming over the visibility graph for computing the max imal area of

all polygons with ὴ as leftmost vertex. Each of these polygons is uniquely determined by one convex

chain, a subset of the ὠὋ, which has ὑ-ς edges (obtained by removing two edges from ὴ). For each

edge Ὡ of the ὠὋ, and for each Ὠ, 1 Ó Ὠ Ó ά-2 we will determine ὈὖὩὨ - the maximum area of all

polygons whose corresponding convex chain starts with Ὡ and which is Ὠ edges long.

We will treat the vertices clockwise. Assume that we are at some vertex ὴ. Let the incoming edges of

ὴ be Ὥὲ,..., Ὥὲ and the outgoing edges έόὸ,..., έόὸ both ordered counter -clockwise by

angle. Note that the algorithm for computing the visibility graph inside ὖ gives us the edges in this

order. For all outgoing edges we know the maximal areas of polygons which corresponding chain

starts there.

We will treat the incoming edges in the reversed order, starting at Ὥὲάὥὼ. For this first incoming edge

we look at all outgoing edges that form a convex angle with it. Let ά be the maximal value of

ὈὖέὨ ρ among them. Then ὈὖὭὲάὥὼὨ = ά + ὃὶὩὥὕὪὝὶὭὥὲὫὰὩὴȟὭὲάὥὼ. Clearly, all

outgoing edges that form a convex angle with ὭȟὮ form a convex angle with (ὭȟὮ-1). Hence, we donõt

have to check them again. Finding the maximal area takes time ὕὑ ȿzὠὋȿ, since we look at each

edge twice.

The overall complexity of the algorithm is ὕὑὔ Ȣ

References

[1] David P. Dobkin, Herbert Edelsbrunner, Mark H. Overmars, Searching for Empty Convex Polygons

(1988)

 Problem I: Dating

Author:

Branko Fulurija

Implementation and analysis:

Branko Fulurija

David Mili ĻeviĻ

Statement:

This story is happening in a town named BubbleLand. There are ὲ houses in BubbleLand. In each of

these ὲ houses lives a boy or a girl. People there really love numbers, and everyone has a favorite

number Ὢ. That means that the boy or the girl that lives in the Ὥ ὸὬ house has a favorite number

equal to Ὢ .

The houses are numerated with numbers from ρ to ὲ.

The houses are connected with ὲ ρ bi-directional roads and you can travel from any house to any

other house in the town. There is exactly one path between every pair of houses.

A new dating agency had opened their offices in BubbleLand and the citizens were very excited. They

immediately sent ή questions to the agency and each question was in the following format:

 ὥ ὦ ð asking how many ways there are to choose a couple (boy and girl) that have the same favorite

number and live in one of the houses on a unique path from house ὥ to house ὦ.

Help the dating agency answer the questions and grow their business.

Input:

The first line contains an integer ὲ, the number of houses in the town.

The second line contains ὲ integers, where the Ὥ-th number is 1 if a boy lives in the Ὥ-th house or 0 if

a girl lives in the Ὥ-th house.

The third line contains ὲ integers, where the Ὥ-th number represents the favorite number Ὢ of the girl

or the boy that lives in the Ὥ-th house.

The next ὲ ρ lines contain information about the roads and the Ὥ-th line contains two integers ὥ and

ὦ which means that there exists a road between these two houses.

The following line contains an integer ή, the number of questions.

Each of the following ή lines represents a question and consists of two integers ὥ and ὦ.

Output:

For each of the ή questions output a single number, the answer to the citizensõ questions.

Example input: Example output:

7

1 0 0 1 0 1 0

9 2 9 2 2 9 9

2 6

1 2

4 2

6 5

3 6

7 4

2

1 3

7 5

2

3

Example explanation:

Blue nodes represent houses where boys live and pink those where girls live, and the numbers beside

nodes represent their favorite numbers.

In the first question from house 1 to h ouse 3, the potential couples are: (1, 3) and (6, 3).

In the second question from house 7 to house 5, the potential couples are: (7, 6), (4, 2) and (4, 5).

Constraints:

¶ ρ ὲ ρπ5

¶ ρ ή ρπ5

¶ ρ Ὢ ρπ9

Time and memory limit: 3s / 64MB

Solution and analysis:

This problem is solved with Moõs algorithm on tree.

Flatten the tree in an array by doing a modified DFS preorder traversal. For every node, we must

calculate ὛὝό and Ὁὔό.

 ὛὝό represents the start time when we entered the node ό in our DFS and Ὁὔό represents the

time when we finished exploring the node ό and its subtree.

ὛὝό and Ὁὔό will give us the position of the node ό in the flattened array.

Now when we must answer query ό ὺ, we split the path ό ὒὅὃ and ὒὅὃὺ. Core of the algorithm

is to see what ranges in our arrays ὛὝ and Ὁὔ we should consider:

Case 1: ὒὅὃ ό:

In this case, our query range would be ὛὝό, ὛὝὺ .

Case 2: ὒὅὃ Ȧ ό

In this case, our query range would be Ὁὔό, ὛὝὺ + ὛὝὒὅὃ, ὛὝὒὅὃ .

We should ignore every node that appears twice or zero on that range (if it appears twice that means

we finished processing that node and it isn't a part of that path). With all this cons idered we can solve

the problem with Mo's algorithm by decomposing the queries in buckets of the size ίήὶὸὲ.

While moving L and R pointers we add and remove nodes and calculate answer on the fly with a

counter array for nodes with girls and for nodes with boys . For example, when we add a node with a

boy, we can do the following: ὶὩί ὧέόὲὸὋὭὶὰὪὥὺέὶὭὸὩὔόάὦὩὶȢ Similarly, for removing nodes

from range. Time complexity ὕὲ ίήὶὸὲ

References

[1] Mo's Algorithm on Trees: http://codeforces.com/blog/entry/43230

http://codeforces.com/blog/entry/43230

 Qualifications

The qualifications were split into two rou nds with ten problems in each round and 25 days for

contestants to solve them. Teams were given one point for each successfully solved problem in the

first qualification round. Successfully solving a problem from second round provided all teams two

points, besides challenge problem which was worth maximum six points.

This year Bubble Cup website was fully integrated with Petlja having ability for the first time to create

custom online programming competitions.

We are extremely happy with our partnership with Sphere Online Judge, Caribbean Online Judge and

DMOJ who provided problems for Bubble Cup qualificati ons this year, for the most diverse problem

set yet. During first round problems from Sphere Online Judge and Caribbean Online Judge were

used, while for second round there was at least one problem from all three online judge platforms.

Because so many elite teams applied, problems in Round 2 were especially difficult making

competitors not only having to optimize on time, but also on space. Even though all problems from

qualification rounds were solved still this remains as one of the toughest Round 2 qualification

problem sets in Bubble Cup history.

Competitors from all around the world participated in the qualifications. Teams that qualified for the

finals were from Serbia, Croatia, Poland, Latvia, Ukraine, Belarus and Russia.

http://petlja.org/
http://www.spoj.com/
http://coj.uci.cu/index.xhtml
https://dmoj.ca/

 Qualification results

Num Problem name Accepted solutions

01 Amusement Park 106

02 City Major 43

03 FFõs Divisors 150

04 Game with Psyho 113

05 Homework with Fibonacci 64

06 I am a Good Sublist 74

07 Legend of Heta 76

08 Maximum Child Sum 62

09 On Time 65

10 Sauronõs Army 125

Num Problem name Accepted solutions

01 Akame 27

02 Arrow 36

03 Line Sweep 37

04 Mine and Tree 32

05 Primitive Pythagorean Pairs 17

06 Periodic Function 5

07 Travelling Knight 2

08 Delivery Game 41

09 [Challenge] Lawnmower 49

10 Terminus Est 25

We continued with our tradition that the contestants are the ones who are writing the solutions for

qualifications problems. You should note that these solutions are not official - we cannot guarantee

that all of them are accurate in general

The organizers would like to express their gratitude to the qualification task authors and

everyone who participated in writing the solutions.

 Problem R1 01: Amusement Park

Fox Ciel is in the Amusement Park and now she is in a queue in front of the Ferris wheel. There are

people (or foxes more precisely) in the queue: we use first people to refer to one at the head of the

queue, and ὲ-th people to refer to the last one in the queue.

There will be Ὧ gondolas, and the way we allocate gondolas looks like this:

¶ When the first gondolas come, the q1 people at the head of the queue go into the gondolas.

¶ Then, when the second gondolas come, the q2 people at the head of the remaining queue go

into the gondolas.

 ...

¶ The remain qk people go into the last (Ὧ-th) gondolas.

Note that q1, q2, ..., qk must be positive. You can get from the statement that Вή Î and ήױ .πױ

You know, people don't like to share the gondolas with strangers, so your task is to find an optimal

allocation way (that is, to find an optimal sequence ή) to make people happy. For every pair of people

Ὥ and Ὦ there exists a value όὭὮ which denotes a level of unfamiliarity. You can assume for ό ό , for

all Ὥ, Ὦ ρױ ױÊױÉȟױ ױÎ and όױ ױπ for all Ὥ ρױ ױÉױ Î. Then an unfamiliar value of gondolas is theױ

sum of the levels of unfamiliar between any pair of people that is in the gondolas.

A total unfamiliar value is the sum of unfamiliar values for all gondolas. Help Fox Ciel to find the

minimal possible total unfamiliar value for some optimal allocation.

Input

The first line contains two integers Î and Ë ρױ ױÎױ ρπππ ÁÎÄ ρױ ױËױ ςππ - the numberױÍÉÎÎȟױ

of people in the queue and the number of gondolas. Each of the following Î lines contains Î integers

- matrix Õ, πױ όױ ױ ωȟόױ ױό ὥὲὨ όױױ πȢױ

Output

Print an integer - the minimal possible total unfamiliar value.

Examples

Example1:

 Input Output
5 2 0

0 0 1 1 1
0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

Examle2:

 Input Output
8 3 7

0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

Time and memory limit: 4s/ 128MB

Solution and Analysis:

This problem is about dynamic programming. At first, letõs consider first auxiliary dynamic: ὪὭὮ ð

what is the value of the total level of unfamiliar if we take on board people with numbers from Ὥ to Ὦ.

Obviously, we understand that this value is equal to

 В ὥὭρὮρ.

Itõs the same as
В ȟ

.

Therefore we should only calculate the sum of all elements in the rectangular in matrix ὥ. We can

perform it by usual partial sums, when we primarily calculate values

 ίόάὭὮ В ὥὭρὮρȟ

by easy dynamic:

ίόάὭὮ ίόάὭ ρὮ ίόάὭὮ ρ ίόάὭ ρὮ ρ ὥὭὮ

(itõs easy to see that we count every element once). After that, we can easily obtain

 ὪὭὮ as ίόάὮὮ ίόάὭ ρὮ ίόάὭὮ ρ ίόάὭὭ.

So now we can consider the main dynamic ὨὴὲὯ- what is the minimal level of unfamiliar if we want

to seat the first n people in k gondolas. To calculate next states, letõs iterate over all possible numbers

of people to take in next gondola (for example, s).

Then, we can update state Ὠὴὲ ίὯ ρ with the value ὨὴὲὯ ὪὯὯ ί .

The total complexity is ὕὲ for preprocessing and ὕὲὯ for main Ὠὴ (we have ὕὲὯ states and

linear number of transitions in every state).

Resource: Caribbean Online Judge

Solution by:

Name: Nikolay Zhidkov

School: Saint Petersburg Academic University

E-mail: zhidkov102@gmail.com

mailto:zhidkov102@gmail.com

 Problem R1 02: City Major

Toby has got a lot of popularity since he defeated Humbertov Moralov in the Primoshkas war. He was

elected mayor of Tobyland and now he is now running for the elections again. Unfortunately for him,

the Rottweiler association controls all of the communications media. This association doesn't like Toby

because they believe that only big and strong dogs should rule the city, and Toby is only a small and

cute dog.

Hence Toby plans to create a new TV station that supports his cause. Toby is short on budget to buy

the antennas, but he knows that he doesn't need to cover the entire population to win the elections.

Toby's city is represented as a non-self-intersecting polygon, and, given the location of the TV station,

your task is to find the m inimum radius of coverage around the TV station such as that at least ὴ

percent of the population (ÐϷ of the polygon area) is inside the radius of coverage. Assuming that

the TV station is located in the origin πȟπ, the TV station could be inside or outside of the city

polygon.

Input

The input consists of several test cases. Each test case begins with a line with two integers

 σ . ρππ and ρ 0 ρππ representing the number of vertices and the percentage of

coverage required. Then follows . lines with two integers ØÉ and ÙÉ

ρπππππ ØÉȟÙÉ ρπππππ indicating the position of vertex number É. The end of the input is

given by the end of file.

Output

For each test case, print a single line containing the minimum radius of coverage as explained above.

Print your answer with 2 decimal digits.

Examples

Example1:

 Input Output
 4 100 1.41

 1 1

 1 - 1

- 1 - 1

- 1 1

Example2:

 Input Output
3 39 1.00

0 0

0 2

2 0

Time and memory limit: 1s/ 64MB

Solution and analysis

Since the percentage of the population inside the radius grows with the radius, the minimum radius

which covers ὴ percent of the area can be found with a binary search. The only thing that needs to be

presented is how to compute the area of the intersection of the disk and the polygon.

If ὴȟȣȟὴ are the vertices of a non-self-intersecting polygon ὖ in a counter-clockwise order and ὴ

ὼȟώ for Ὥ ρȟȣȟὲ, then, by the so-called shoelace formula, the area of the polygon is equal to

ὼώ ὼ ώ

ς

where ὼ ȟώ ὼȟώ . To understand how the area of the intersection of the polygon with the

disk can be computed, we need to understand why the shoelace formula works.

Ὥth term of the sum in the formula is half of the cross product of ὴ and ὴ , that is the signed area

of a triangle Ὕ with vertices πȟπ, ὴ, and ὴ , which is the area of Ὕ if the vertices πȟπȟὴȟὴ are

in the counter -clockwise order, or minus the area of Ὕ if the vertices are in clockwise order. Thus, the

shoelace formula says that the signed area of ὖ is the sum of the signed areas of the triangles ὝȟȣȟὝ.

To see why this is true, let us consider any region Ὑ of a plane, such that no ray ὸὼȟὸώ Ḋὸ π and

no line segment [ὼȟώȟὼ ȟώ intersects Ὑ. Then, when summing the signed areas of the

triangles, if Ὑ is outside of the polygon, we add the area of Ὑ as many times as we subtract it, and if Ὑ

is inside the polygon, then we add it one more time t han we subtract it (see Figure 1 for an illustration).

Figure 1: The area of the region Ὑ is added twice in the shoelace formula (when adding the signed

area of the triangles Ὕ and Ὕ) and subtracted twice (when adding the signed area of the triangles

Ὕ and Ὕ). The area of the region Ὑ is added twice and subtracted once. The area of the region Ὑ

is added once and subtracted once. The area of the region Ὑ is added once and never subtracted.

The area of the region Ὑ is not added nor subtracted.

Now, we will describe how to calculate the area of the intersection of a polygon ὖ with a πȟπ-origined

disk with radius ὶ. We denote the intersection by Ὅ. If no side of the polygon intersects the disk, then

Ὅ is simply the disk, so the area can be easily calculated. From now on we assume that at least one

side of ὖ intersects the disk.

The boundary of Ὅ can be represented as a union of curves ὛȟȣȟὛ , where each Ὓ is either a line

segment lying on a side of ὖ, or a circular arc lying on the boundary of the disk. For any Ὓ, if the

endpoints of Ὓ are collinear with πȟπ, then we define ὥ and ὦ to be the endpoints of Ὓ in any order.

Otherwise we define ὥ and ὦ to be the endpoints of Ὓ in such an order, that when moving from ὥ

to ὦ along Ὓ, we traverse the boundary of (a component of) Ὅ in a counter-clockwise direction.

For Ὥ ρȟȣȟά, if Ὓ is a line segment, we define ὺ to be the signed area of the triangle with the

vertices πȟπ, ὥ and ὦ. If Ὓ is a circular arc, we define ὺ as the (unsigned) area of the circular sector

enclosed by ὛͅὭ and segments from πȟπ to ὥ and from πȟπ to ὦ. Recall that the area of a circular

sector with radius ὶ and angle — is .

We claim that the area of Ὅ is В ὺȢ Note that this is a generalization of the shoelace formula (these

two formulas are identical for sufficiently larg e ὶ). The same reasoning as in the case of the shoelace

formula, but for a region Ὑ which does not intersect any ray ὸὥḊὸ π or ὸὦḊὸ π and none of

the curves Ὓ, proves the formula for the area of Ὅ. The reason why we take the unsigned area of the

circular sectors is because if Ὓ is an arc and we move from ὥ to ὦ along Ὓ, then we move in counter-

clockwise with respect to the origin πȟπ. This is not necessarily the case if Ὓ is a line segment.

Finally observe that the representation of the boundary of the Ὅ as a union of the curves ὛȟȣȟὛ can

be computed in ὕὲÌÏÇὲ time: First intersect every side of the polygon with the disk to obtain those

of ὛȟȣȟὛ that are line segments (ὕὲ time). Then find all the intersections ὧȟȣȟὧ of the sides of

ὖ with the boundary of the disk (ὕὲ time), sort them in a counter-clockwise order (ὕὲÌÏÇὲ time),

and determine which of the arcs from ὧ to ὧ are lying on the boundary of Ὅ by inspecting the slope

of the sides of ὖ incident to ὧ or ὧ .

Resource: Caribbean Online Judge

Solution by:

Name: Michal Seweryn

School: Jagiellonian University

E-mail: michalsew@gmail.com

 Problem R1 03: FFõs Divisors

Little Felix Fuente a.k.a. FF wants to solve his math assignment. His teacher has taught him that a

number Î has ÄρȟÄςȟÄσȟȣȟÄÉ divisors (1 and itself included). If Ð Äρ z Äς z Äσ z ȣ z ÄÉ, help FF

find the total number of divisors of Ð.

Input

Several lines but no more than 120. Each line of input contains an integer ὲ ρ Î ρπχȢ The input

ends with a line containing 0.

Output

For each input line output the number of divisors of Ð.

Examples

 Input Output
1 1

2 2

3

4

0

2

4

Time and memory limit: 1s/ 64MB

Solution and analysis:

The solution to the problem lies in finding the prime factors of the divisors ÄÉð the divisors of ὴ. Once

we do that, itõs a problem of finding the best way to multiply all those divisors, and get the final result

for the test case.

We start off by constructing a sieve of Eratosthenes up to the largest single divisor (which is 107). We

use a modified version of the popular algorithm, where we also store the primes in a separate array,

as well as keeping an array which links the actual number to the index in the prime array. Once we get

a number from the input, we first check whether this number is a square, because we will need to

process its root separately. We iterate through the numbers smaller than the root of this number, and

process each divisor, as well as the result of the division .

Processing the divisors is the main part of the solution. Firstly, we check if the number is a prime. If it

is a prime, we add it to the final list of prime factors. Otherwise we find its prime factors using our

sieved array, and add each prime to the final list. We do this in a particular way. Every time we

encounter a prime divisor, we check whether weõve added it to the list, if we havenõt, we add it to the

list. Once itõs added to the list, we just increase its counter by 1 every time we encounter it. We check

whether it was added by looking it up in an array of added factors, itõs the size of the primes array,

and itõs directly proportional to it.

Once weõve processed all the divisors, we just iterate through the prime factor array, multiply them,

and we get our solution. While doing this, we also reset the arrays for the next test case.

Resource: Caribbean Online Judge

Solution by:

Name: Mihajlo Kocic

School: Faculty of Science and Mathematics, University of Nis

E-mail: kocicmihajlo@gmail.com

 Problem R1 04: Game with Psycho

This is an interesting game. There are Î psychos standing in the line. Each psycho is assigned a unique

integer from 1 to Î. At each step, every psycho who has an id greater than the psycho to his right (if

exists) kills his neighbor to the right in the line. Note that a psycho might kill and get killed at the

same step.

Youõre given the initial arrangement of the psychos in the line. Calculate how many steps are needed

to the moment of time such that nobody kills his neighbor after that moment. Look notes to

understand the statement more precisely.

Input

The first line of the input contains an integer 4 ρ 4 σπ, meaning the number of th e test cases.

For each test case: The first line of input contains integer Î denoting the number of psychos,

ρ Î ρπυ. In the second line, there will be a list of Î distinct integers separated by a single

space, each one in then range from 1 to Î, inclusive, indicating the IDs of the psychos in the line from

left to right.

Output

Print the number of steps, so that the line remains the same afterwards.

Examples

 Input Output
1 2

10

10 9 7 8 6 5 3 4 2 1

Explanation

Note: In the sample line of the psychos transforms as follows:

ρπ ω χ ψ φ υ σ τ ς ρ Oױ ױρπ ψ τ O ױ .ρπ. So, there are two steps ױ

Time and memory limit: 2s/ 128MB

Solution and analysis

The most important observation here is that the time of death of a chosen psycho is entirely

independent of whatõs on his right side. Letõs denote ὸὭ as the round when the psycho on the Ὥ

position is alive, or -1 if he never dies. If we can compute the entire array ὸ, our answer is the maximum

of these values plus one, as this is the last round when some of these psychos die.

Obviously ὸρ ρ, as he is the leftmost one. Now for given index Ὥ ρ we want to deduce ὸὭ from

previous values, that is ὸρȟὸςȟȣȟὸὭ ρ .

Letõs call a psycho shorter if he has lower identifier number, and taller if otherwise.

 If Ὥ psycho is the tallest amongst the first Ὥ psychos ὸὭ ρ. Otherwise, there exists a psycho on

the left that is taller than him. Letõs take the rightmost one and denote itõs index Ὦ. If there are no

psychos between Ὦ and Ὥ, that means that Ὥ psycho dies on the first round, and ὸὭ π. Otherwise

there are some psychos between Ὦ and Ὥ. As these psychos are shorter than Ὥ psycho, all of them

must be removed before Ὥ dies.

Letõs look at the moment when already every psycho between Ὥ and Ὦ have died. At that moment, the

psycho on the left of Ὥ must be taller or equal to Ὦ . So in the next round Ὥ psycho dies.

To conclude, formula for ὸὭ is as follows

ὸὭ
ρȟ ὲέ ὬὭὫὬὩὶ ὴίώὧὬέ έὲ ὸὬὩ ὰὩὪὸ

ρ ÍÁØρȟὸὮ ρȟȣȟὸὭ ρ ȟ Ὦ Ὥί ὸὬὩ ὭὲὨὩὼ έὪ ὥ ὬὭὫὬὩὶ ὴίώὧὬέ

This can be computed by using interval tree, which in total yields complexity ὕὲz ÌÏÇ ὲ , but we

can come up with ὕὲ algorith m using stack.

We would like to keep only interesting psychos, that is, psychos who can influence the results on the

right. It turns out that stack of psychos of increasing height (so the shortest psycho is on top) is

enough.

Initially the stack is empty. When a new psycho comes, we store the maximum time of the shorter

psychos on the left. We pop shorter psychos until the stack is empty, or there is a taller psycho on the

top. If the stack is empty, the answer is -1, otherwise itõs 1 + the maximum of the death times of

encountered shorter psychos we popped from the stack. At the end, we push the new psycho on the

stack. Do notice that information from the popped psychos wonõt affect any future result, for 2 reasons:

¶ None of these psychos can be the rightmost taller psycho, as the new psycho is taller

¶ None of these psychos can have the maximum time of psycho in between, as the new

psycho has higher time.

Each psycho is popped and pushed at most once, so complexity of such algorithm is ὕὲ.

Resource: Caribbean Online Judge

Solution by:

Name: Juliusz Straszyœski

School: University of Warsaw

E-mail: julek@straszynski.pl

 Problem R1 05: Homework with Fibonacci

Rodrigo Díaz de Vivar (1043 - July 10, 1099), known as Cid Campeador (òThe lord-master of military

artsó), was a Castilian nobleman, a military leader, a ferocious warrior, and a diplomat that fought

against the Moors. El Cidõs legendary martial abilities have fueled his reputation as an outstanding

battlefield commander and one of the greatest heroes in Spainõs history.

Before becoming a great warrior, El Cid was a mathematics and puzzles lover in his childhood. But one

time, he got stuck with the following problem:

You are given a sequence of integers ÁρȟÁςȟȣȟÁÎ. Your task is to perform over the sequence

Í consecutive operations of the following type:

1. For given numbers ὰὭ and ὶὭ you've got to calculate В ὪὥὯḊ Ὧ ὰȢȢὶ, where f π Ὢρ

ρ and ὪὭ ὪὭ ρ ὪὭ ςȡ Ὥ ς.

2. For a group of three numbers ὰ, ὶȟὨ you should increase value ὥ by Ὠ for all ὼȟ
 ὰȟ ὼ ὶ

Input

The first line contains the number of test cases (at most 15). For each test case: The first line contains

one integer ὲ ρ ὲ ρπυ - the number of integers in the sequence. The second line contains ὲ

integers ὥρȟὥςȟȢȢȢȟὥὲ ρ ὥ ρπχ, separated by spaces. The third line contains one integer ά

ρ ά ρπυ - the number of operations. Then follow ά lines that describe the operations. Each

line starts with an integer ὸρ ὸ ς indicating the operation type:

¶ If ὸ ρ, then next follow two integers ὰand ὶρ ὰὭ ὶ ὲ, separated by spaces.

¶ If ὸ ς, then next follow three integer s ὰ, ὶand ὨὭ ρ ὰ ὶ ὲȟπ Ὠ ρππ,

separated by spaces.

Output

For each query where ὸ ρ, print the calculated sum modulo ρππππππππχ ρπ χȢ

Examples

 Input Output
1 6

5 42

3 1 2 5 6

3

1 1 3

2 2 4 2

1 2 5

Time and memory limit: 10s/ 128MB

Solution and analysis :

Before we go to the solution of this problem, let us consider what happens with the value)(xf if we

increase x by d .

If d is equal to 1, then by the definition of Fibonacci numbers:)1()()1(-+=+ xfxfxf . If d is

larger than 1 following equation is correct:)(*)1()1(*)()(dfxfdfxfdxf -+-=+ .This equation

can be proven by induction, with base being 1=d . Let us notice that if we have sum of some Fibonacci

values ä)(iaf and given d following equation is correct:

 ää ää -+-=-+-=+)1(*)()(*)1())1(*)()(*)1(()(iiiii afdfafdfafdfafdfdaf

Now let us consider two segment trees. One keeps sum of values)(xf in segment, and other one,

sum of values)1(-xf in segment. When processing question queries, we output sum of values of

the first segment tree in given segment. When processing update queries we calculate new values

(with the above given formula) for nodes in given segment in the both segment trees. In order to

speed up the performance of this algorithm we will use lazy propagation.

Resource: Caribbean Online Judge

Solution by:

Name: Aleksa Milisavljevi Ļ

School: Matem aticka gimnazija

E-mail: aleksamilis@gmail.com

 Problem R1 06: I am a Good Sublist

Ted has been studying numeric lists (lists of positive integer numbers not necessarily different and not

necessarily in order). He has learned that a good sublist of a given list ὒ is such sublist whose sum of

elements is no greater than a given number ὓ. A maximal good sublist is a good sublist Ὓ of ὒ such

that for every element ὼ of ὒ not in Ὓ if ὼ is added to Ὓ it becomes bad. Ted wants to know how many

maximal good sublists are there of a given list. Can you help him?

Note: ὃ sublist Ὓ of the list ὒ is a list obtained by removing some (maybe none or all) of the elements

of the list ὒ.

Input

First line of input contains integers ὔ and ὓ separated by spaces. Second line of input contains ὔ

integers ὰὭȟ ρ Ὥ ὔ the elements of the list separated by spaces. It is granted that

ρ ὔ ρπππ, ρ ὓ ρππππ and ρ ὰ ρπππ.

Output

Output in a single line the number of maximal good sublists modulo ρππππππππχ ρπ χȢ

Examples

 Input Output
3 10 2

5 3 6

Time and memory limit: 1s/ 64MB

Solution:

Let us sort the input list, and denote it as ὒ. We will consider sublists Ὓ of the list ὒ. Let us observe that

for a sublist Ὓ to be good, it must hol d:

ίόάὛ ὓ

ίόάὛ ὓ άὭὲὒ͵Ὓ ρ

where ίόά denotes the sum of the elements of a sublist, άὭὲ the smallest element in a sublist,

and ͵ is set difference.

Let us fix index Ὥ, and assume the Ὥ-th element in the (sorted) list ὒ is the first element that will not be

contained in the sublist Ὓ. For each Ὥ, we will calculate the number of good sublists Ὓ with this property.

Summing up those quantities will give the answer for our problem.

Let us denote the Ὥ-th element of ὒ as ὼ. From the definition of Ὥ it follows that elements ρȟȣȟὭ ρ

must be contained in Ὓ, let their sum be ὸ. We see that the number of ways to suitably choose the

remaining elements of Ὓ is exactly the number of ways to choose a sublist of elements with indications

Ὥ ρȟὭ ςȟȣȟὔ summing up to at least ὓ ὸ ὼ ρ, and at most ὓ ὸ. Note that some care must

be exercised when the bounds on the sum of Ὓ are negative.

It will be enough if we are able to answer queries of the form: how many sublists of some suffix of ὒ

exist, such that they sum up to at most ὠ (for some ὠ). This, in turn, is a standard dynamic

programming exercise: for each possible suffix of ὒ, and sum ὠ, we keep the number of sublists of the

considered suffix that sum up to at most ὠ. A single information of this kind can be computed in a

constant time, given the information that was found previously. Note that the range of values for ὠ is

small, because we are only interested in ὠ ὓ.

The dynamic programming described above runs in time ὕὔὓȢ Having computed all the cases, the

remaining part of the solution works in ὕὔ . This gives a total running time of ὕὔὓ, which is

enough to pass all test cases.

Resource: Caribbean Online Judge

Solution by:

Name: Krzysztof Maziarz

School: Jagiellonian University

E-mail: krzysztof.s.maziarz@gmail.com

 Problem R1 07: Legend of Heta

Heta is a conventional name for the historical Greek alphabet letter Eta (ǫ) and several of its variants,

when used in their original function of denot ing the consonant /h/ (Wikipedia). Because of whispers

of N'Zoth the corruptor, Heta now wants to destroy all existing alphabets (fiction).

Heta has a spell book containing spells to delete a string. There are several spells in that book. Armed

with the spellbook, Heta starts his journey to complete his mission. On his way, Heta found a very long

string. To delete that string, Heta reads that string letter by letter from the first letter. If at any point

he found a substring that's present in his spellbook, that spell will be cast, and that substring will be

destroyed. Then he continues until he reaches the end of that string and no more spells can be used.

If there are multiple spells that can be used at one time, the spell that appears first in the book is used.

Determine what's left of the very long string after Heta is done!

Input

First line is a string containing A-Z. String can contain from 1 to 100000 characters. Next line of input

is ὔ, the number of spells in the spellbook ρ ὔ ρππ. Next ὔ lines contain spells sorted by

appearance in the spellbook. Each spell is a string containing A-Z with length from 1 to 100.

Output

One line containing the string after Heta is done doing his magic.

Examples

Example1:

 Input Output
KUKUKAKIKUKAKEKKUKAKAKKUKAKUKAKU KAKIKAKAKAKKAKAKU

2

KEK

UK

Example2:

 Input Output

HEATHLEDGER

2

HEATH

LEDGER

Example3:

 Input Output
KAPKAPPAPAK K

1

KAPPA

Example4:

 Input Output
CABAI CAI

3

ABA

AB

B

Time and memory limit: 1s/ 128MB

Solution:

The idea of the solution is to implement efficiently Hetaõs algorithm - the program goes over the initial

string ╢, checks at each position ░ whether a spell ends there and if so erases its corresponding

substring.

To erase the substrings efficiently we suggest using a separate stack-like data structure ╢ᴂ where the

currently processed part of ╢ is stored. When the program iterates to the next character of Ὓ, it is

pushed to Ὓᴂ. When a spell ending at Ὥ is found, the characters which form it are popped one by one

- it isnõt an issue to do so, since each character of Ὓ is popped at most once, requiring ὕὔ operations

in total. I recommend using std::vector instead of std::stack because it also supports ὕρ random

access - this is important for the next part of the solution.

Since the maximal length of the spells (letõs denote it with ╜╪●╢▬▄■■) is relatively short (100), for a

given end index Ὥ, it isnõt a problem to iterate over all possible starting positions for a spell ▒ (let ╢ᴂ▒ȟ░

╢ᴂ▒ȢȢȢ╢ᴂ░) and check whether Ὓᴂȟ is a spell. For each position, there are at most ╜╪●╢▬▄■■ starting

indexes, ȿὛȿ ὓὥὼὛὴὩὰὰ substrings to be checked in total. By comparing them naively, we get an

ὕȿὛȿ ὓὥὼὛὴὩὰὰ ὔ algorithm. This solution could be improved by comparing the substrings

using hashes instead.

Firstly, to be able to compute the hashes of substrings of Ὓᴂ efficiently, a rolling hash function is

required, e.g.:

Ὄὥ ὥὴ ὥὴ ὥὴ ȢȢȢὥὴ άέὨ ὓ

where ὴ and ὓare prime numbers, ὴ ρππ, ὓ ρπ and Ὧ ȿὥȿ. For a fixed end index Ὥ and Ὦ Ὥ we

have ὌὛᴂȟ Ὓ and for every other Ὦ Ὥ we have

ὌὛᴂȟ Ὓᴂ ὴ ὌὛᴂ ȟ άέὨ ὓ

This way each ὌὛᴂȟ can be calculated in ὕρ.

Secondly, we need a fast way to determine which spell (if any) corresponds to a specific hash. This

could be done by storing the index of the spell with a given hash in an unordered_map, which supports

ὕρ access on average. Then for every end position Ὥ we compute the values of ὌὛᴂȟ and determine

which spells (if any) they correspond to. We take the one with the smallest index (let its length be Ὧ)

and we pop the last Ὧ characters of Ὓᴂ, thereby erasing the spell. Of course, if no spell is found ending

at Ὥ the algorithm continues without deleting anything.

We process each substring in ὕρ and have a combined complexity of ὕȿὛȿ ὓὥὼὛὴὩὰὰ. There is

another approach which doesnõt use hashes and does ὓὥὼὛὴὩὰὰ concurrent traversals of a Trie with

all spells instead. It is, however, more complex and for this reason isnõt covered here.

Resource: Sphere Online Judge

Solution by:

Name: Alexander Crustev

School: High School of Mathematics , Varna

E-mail: aleks.tcr@gmail.com

 Problem R1 08: Maximum Child Sum

A rooted tree is being built. Initially, there is only one node in the tree, having number 1 and value 0.

You are to perform ὗ ὗ ςπππππ queries, each of them is one of the following two types:

¶ 1 ὢ ὣ - Add a new vertex to the tree with parent ὢ (It's guaranteed that node ὢ is already in

the tree) and value ὣ ρ ὣ ρπω. Its number will be the smallest positive integer that is

not a number of a node yet. For example, the first query of this type will add a vertex with

number 2, then 3, then 4 and so on.

¶ 2 ὢ - Consider the children of node ὢ. For each of them, let's sum up the values of all nodes

in their subtrees. You are asked to print the maximum of those sums.

Input

The first line contains an integer ὗ - the number of queries. Each of the next ὗ lines contains one of

the queries.

Output

Print the answers for all queries of the second type, one answer per line.

Examples

 Input Output
7 3

1 1 3 0

2 1

2 2

1 2 5

2 1

1 1 4

2 1

8

8

Time and memory limit: 2s/ 128MB

Solution:

Firstly, we can input the entire tree and set the initial values of the nodes to zero. We can do this since

the value of zero doesn't affect the queries. This way, we have transformed the problem of adding

nodes to the tree to the problem of setting values of certain nodes.

Let's run a dfs from the root (node 1) and list the nodes in the order they are traversed (this

permutation is called Euler walk). It can be easily seen that a subtree of a node is represented as a

segment in the permutation. The beginning and the end of the segment can be obtained using the

discovery and finish times of that particular node. Therefore, the sum of node's values in the subtree

is equal to the sum of the values on the segment so we can use a segment tree to add nodes and

query the sum in a subtree in ὕὰέὫ ὲ time complexity, where n stands for the number of nodes.

We can also add a node in ὕὰέὫ ὲ time complexity, but it takes us ὕὲόάὦὩὶέͅᾪὧὬὭὰὨὶὩὲ z ὰέὫ ὲ

time complexity to answer a query, which gives an overall complexity of ὕὲ z ή z ὰέὫ ὲȟ which is

too slow.

Let ὑ τππ. Queries for nodes with at most K children will be answered in the previously described

manner, which is acceptable for the given time limit.

Queries for nodes with more than ὑ children will be answered in ὕρ. To achieve this, when adding

a node in the tree we need to traverse all the nodes with more than ὑ children between the added

node and the root of the tree. Let ὢ be the node that is being added, ᾣὯ the Ὧ-th node on the path

from ὢ to the root which has more than ὑ children, and let ᾤὯ be the child of node ᾣὯ which is on

the path from the ὢ to ᾣὯ (notice that ᾤὯ is uniquely determined). We need to add the value of ὢ

to the sum of the subtree of ᾤὯ and, if necessary, update the solution for ᾣὯ to be the sum of the

nodes in the subtree of ᾤὯ. This makes the complexity of adding a node to be ὕὰέὫ ὲ ὲ Ⱦ ὑ . The

overall complexity is good enough for this task.

Resource: Sphere Online Judge

Solution by:

Name: Stjepan PoĤgaj

School: Faculty of Science and Mathematics, University of Croatia

E-mail: stjepan.pozgaj1@gmail.com

 Problem R1 09: On Time

Classes begin at 8:00 am at the University of Cienfuegos (UCf). Bob doesn't want to be late, but he

doesn't want to wake too early either. There are several ways by which he could get to the UCf from

his home: he could walk, or take a bus, or a combination of both.

Using a map of the city of Cienfuegos, Bob has identified ὔ locations he could visit on his way to the

UCf including the latter and his home, some of which are bus stops. He named all locations with

unique integer numbers from 1 to ὔ; by default, he named his home as 1 and the University as ὔ. Bob

can walk from location ὥ to location ὦ if there is a street connecting them. To measure the length of

every street Bob used the time (in seconds) it takes to walk through it.

Every bus serving in the city has a route, a starting time Ὓ and a periodicity Ὕ. A bus route can be

represented as a sequence of unique locations on Bob's map: ὧȟὧȟȢȢȢȟὧ; ὧȦ ὧ for Ὥ Ȧ Ὦ. Every

location in this description is a bus stop. The bus takes 1 second to move from ὧ to ὧ ρ. At time Ὓ

the bus stops in the location ὧ, after 1 second traveling stops in ὧ, and so on until it reaches the last

stop in ὧ. Also, every Ὕ seconds (counting from time Ὓ) there is a bus in ὧ starting the same operation.

Note that a bus can start the route at Ὓ Ὕz Ὧ (in location ὧ, Ὧ as a Natural Number), while another

bus from the same route haven't yet reached ὧ.

Bob have gathered all the information necessary to find out at what time (with the accuracy of a

second) he can leave home to arrive to the UCf before classes begin.

Input

A line with the numbers ὔ (ς ὔ ρπτ, locations in Bob's map), ὓ (π ὓ ρπυ, number of

streets), ὄ (π ὄ ρπς, number of bus routes) and ὖ ρ ὖ ψφσωω, the time in seconds when

classes begin).

Next ὓ lines describing each street with the numbers ὥὭȟὦὭ ρ ὥὭȟὦὭ ὔȟ

 ὰὭ ρ ὰὭ ρπσȠ meaning that Bob can walk from ὥὭ to ὦὭ, or from ὦὭ to ὥὭ, in ὰὭ seconds. Next ὄ

lines describing a bus with the numbers ὛȟὝȟὙȟὧȟὧȟȢȢȢȟὧ

π ὛȟὝ ψφσωω ȟς Ὑ ρπȟρ ὧ ὔ ; meaning that this bus route begins operating at

time Ὓ, repeats every Ὕ seconds and goes through locations ὧȟὧ, ... and finishes at ὧȢ

Output

Print a single integer, the greatest time (in seconds) when Bob should leave home in order to arrive at

the UCf before time ὖ (when classes begin). If Bob needs to leave home the day before (negative time)

just print "sleep at the UCf". You may assume that there is always a path from location 1 to ὔ.

Examples

 Input Output
6 7 1 480 460

1 2 5

2 4 30

4 6 15

2 3 20

4 5 15

3 5 10

5 6 5

105 20 3 2 4 5

Explanatio n:

In the example, Bob leaves home at 460, reaches location 2 at 465 by walking, at 465 takes the bus

from location 2 to location 4 and from location 4 to location 5, reaching 5 at 467, finally walks to the

UCf (location 6) reaching there at 472. Classes begin at 480, so he got earlier.

Time and memory limit: 1s/ 64MB

Solution and analysis

The solution algorithm consists of 3 parts:

1. Constructing the graph.

2. Finding the quickest path from start to finish.

3. Searching for the best starting time.

Constructi ng the graph:

Each node in the graph will be depicted by ╧ objects (╧ being the number of paths from that node to

its neighbors), which consist of 4 properties:

¶ It's a neighbor.

¶ The time required to walk to the neighbor.

¶ The time at which the first bus arrives to that node (goes to the neighbor).

¶ The period at which every other bus arrives (goes to the neighbor).

The objects will be stored in the C++ vector container.

Finding the quickest path from start to finish:

The algorithm used for finding the path is Dijsktra, with some modifications, which takes the starting

time as a parameter. First, we make a heap of objects consisting of the 2 properties, the current node

╝, and the total time required to get to it ╣, the whole heap will be sorted by a least amount of time

required, which will make sure that the top object represents the node to which the path is the

quickest. Then, iterating through the graph, we check if there is a bus line going through ╝ and to it's

neighbor . If there is, we check whether it is worth to wait for the next bus or not.

Yes:

 We make a new object representing the next node whose ╣ will be ╝'s time + wait time +

1

No:

 We make a new object representing the next node whose ╣ will be ╝'s time + trave l time

Finally, we pop the previous and push the new object on to the heap and continue the same until the

'school' node is at the top of the heap, which means we have found the quickest path for the starting

time. We empty the heap and check if we have made it to school in time, the function should return

1 if we did and 0 if we didn't.

Searching for the best starting time:

We initially call the function from time 0, to check if he can't make it to school at all, in which case the

solution would be "sleep at the UCf". If that is not the case, using binary-search and calling the

function, we find the largest time at which he can start and get to school.

Resource: Caribbean Online Judge

Solution by:

Name: Ilija Rackov

School: High School "Veljko Petrovic" , Sombor

E-mail: ilajdzaa@gmail.com

 Problem R1 10: Sauronõs Army

After the last war of the five armies, Sauron wants to make his army more powerful. For that he has

found an error that needs to be corrected, the soldiers are tired of seeing the same preceding soldier

in the line. Then he needs to know in how many ways he can arrange each line so that no soldier sees

the same preceding soldier from the last war. Given the line of ὔ soldiers compute the amount of

arrangements that meet the rules above.

Input

The only line of input contains an integer ὔ ρ ὔ υππ.

Output

Print a line with the amount of arrangements άέὨ ρπ χ ρππππππππχȢ

Examples

 Input Output
3 3

Explanation:

For the sample input the possible permutations are ρȟςȟσȟρȟσȟςȟςȟρȟσȟςȟσȟρȟσȟρȟςȟσȟςȟρ. If the

first permutation was used in the last war, then the possible permutations that meet the rules are

ρȟσȟςȟςȟρȟσȟσȟςȟρȢ

Time and memory limit: 1s/ 64MB

Solution and analysis

Without losing generality, we can assume that Sauronõs army from the last war was the

lexicographically smallest permutation, i.e., ρȟςȟȢȢȢȟὔȢ Therefore, we are asked to compute the

number of permutations with no rising successions. A permutation “ is said to have no rising

successions if Ὥᶅ “Ὥ ρ “Ὥ ρȢ

Let Ὢὲ be the number of permutations with no rising successions of length ὲȢ We shall prove the

following recurrence:

Ὢπ Ὢρ ρ

ὲ σȟὪὲ ὲ ρẗὪὲ ρ ὲ ςẗὪὲ ς

Obviously, we want to compute Ὢὔ which can easily be done in ὕὔ .

Proof : Note that we can build any permutation of length ὲ by inserting a number ὲ at the beginning,

at the end or between any two elements of a permutation of length ὲ ρ.

Similarly, we can obtain any permutation with no rising successions by either:

1. Inserting ὲin a permutation with no rising successions of length ὲ ρ such that it is not

preceded by ὲ ρ.

2. Inserting ὲ in a permutation with exactly one rising succession so that it breaks the rising

succession.

Obviously, the former insertion (1) can be achieved in ὲ ρẗὪὲ ρ ways since we can insert the

number ὲ anywhere except immediately after ὲ ρ.

The only thing left to derive is the number of permutations of length ὲ that have exactly one rising

succession. We will construct those permutations from permutations without rising successions of

length ὲ ρ.

Suppose we have fixed such permutation of length ὲ ρ. We can now build ὲ ρ permutations

of length ὲ that have a single rising succession using the following algorithm:

p < - fixed permutation with no rising successions of length n - 1

for k in [1,2,...,n - 1]:

 pô <- p

 for i in [1,2,...,n - 1]:

 if pô(i) >= k:

 pô(i) <- pô(i) + 1

 insert k in pô so that it precedes (k+1)

This process will yield all permutations of length ὲ that have exactly one rising succession. Since the

process is reversible, we can conclude that the total number of such permutations equals ὲ ρẗ

Ὢὲ ρ.

Finally, the latter insertion (2) can be achieved in ὲ ςẗὪὲ ς ways. Combining (1) and (2) we

have proved our recurrence.

For a more general analysis of permutations with successions, you can check out this awesome blog

post.

Resource: Caribbean Online Judge

Solution by:

Name: Ivan Paljak

School: University of Zagreb

E-mail: ipaljak@gmail.com

https://mikespivey.wordpress.com/2011/11/14/fixed-points-and-successions/
https://mikespivey.wordpress.com/2011/11/14/fixed-points-and-successions/

 Problem R2 01: Akame

Akame is training on an infinite 2D Cartesian plane. There is an infinitely long, rigid and vertical string

at each integer ὼ-coordinate. She takes out her katana, Murasame, and makes N infinitely long slashes

on the plane. Each slash can be seen as a line with the equation ὃὼ ὄώ ὅ , for some ὃ , ὄ , and ὅ.

A slash will never be a vertical line.

Each string Akame slashes will immediately be broken into two smaller strings. For example, a string

originally from υȟЊ to υȟЊ severed by the line πὼ ρώ σ will be broken into the two strings

υȟЊ to υȟσ and υȟσ to υȟЊ . A string is considered disconnected if it is of a finite length. For

example, the string from ρȟω to ρȟЊ is not of finite length, but the string from ψȟσ to ψȟτ is.

There are ὓ points on strings Akame wants to disconnect. A point is said to be disconnected if it is

either slashed or the string it's on is disconnected. To measure her performance, Akame would like to

know the earliest moment (that is, after which slash) each point is disconnected. The slashes are

numbered from 1 to ὔ .

Input

The first line of input will have ὔ and ὓ , separated by a single space.

The next ὔ lines of input will each describe one of Akame's slashes, with ὃ ȟὄ , and ὅ separated by

spaces.

The next ὓ lines of input will each describe a point Akame wants to disconnect, with ᾢὭ and ᾣὭ .

Output

There should be ὓ lines of output. The ὭĬth line should contain the smallest index of the slash that

after it is performed, the ὭĬth point is disconnected. If the ὭĬth point is never disconnected, print -1

instead.

Constraints:

ρ ὔ υπππππ

ρ ὓ υπππππ

π ὃȟȿὅȿ σππππ

ρ ȿὄȿ σππππ

π ȿᾢὭȿȟȿᾣὭȿ ρπ

Examples

Example1:

 Input Output
3 5 - 1

0 1 3 1

0 1 5

0 1 7

1 2

1 3

1 4

1 5

1 6

2

2

3

Example2:

 Input Output
10 10 2

81 - 36 72 3

64 - 69 24

23 47 47

83 36 18

1 25 77

12 - 81 - 3

13 - 90 - 34

23 19 - 34

19 23 78

50 - 96 82

56 59

85 47

46 - 23

1 13

- 74 - 69

23 99

- 98 72

- 31 - 65

- 78 7

4

- 1

2

- 1

4

2

4

- 1

Time and memory limit: 10s/ 1024MB

Solution:

We are going to make a binary tree in the kind of way we make merge sort in ὔ ὰzέὫὔ

In that binary, each node will store interval from ὒ to Ὑ inclusive of course.

What will be in that interval? Linear equations we get from adding them one by one, that being said,

in that node we store both upper and lower envelope of linear equations added between moment ὒ

and Ὑ inclusive.

We build that binary tree like with merge sort method. Only in this method firstly we check which of

the two lower nodes is the one with the bigger slope (in case of lower envelope and vice versa in case

of upper envelope).

Now we need to find the minimum time for each of the points when it gets surrounded by envelopes.

Firstly, we send first slash to separate points in two groups, upper or lower. To upper, if the first slash

is below our point, or lower, if the first sl ash is above our point.

We first push all of the points in the first node of the binary tree (which holds all slashes between the

start and the end), if our point never gets a slash it needs (lower or upper according to need) in first

node, then that point gets output -1, or so to say never gets cut off by definition of the task.

For the points which are still alive after that first check, we try to push all of them in the left node

(which holds all slashes between ρȢȢȢ , if a point gets cut off there , then her time of getting cut off is

 and we push her to the left, or else we push our point to the right.

You actually do 2 of these tours, one for the upper and one for the lower group of points described

before.

Overall complexity ὕὔ ὰzέὫὔ

Resource: DMOJ

Solution by:

Name: Kristijan VeroviĻ

School: Highschool Lucijana Vranjanina , Samobor

E-mail: kiki.verovic@gmail.com

 Problem R2 02: Arrow

Bruce is playing the game Green Arrow. In the game, the ground is the ὼ-axis and the targets are a

number of vertical line segments in the first quadrant. There is no intersection between any two

targets. Moreover, no target touches the ὼ-axis. Bruce can control a game character, always located

at πȟπȟ to shoot an arrow towards the first quadra nt with an angle — π — ωπ .There is no air

resistance in the game. Thus, the trajectory of the arrow will be a standard parabola. The targets which

are crossed by the trajectory are hit in the game, including those with only endpoints cro ssed by the

trajectory.

In challenge mode, there are a few rounds. In the first round, there is only one target. If Bruce hits the

target, he can pass to the second round. In the second round, the target in the first round will appear

and a new target will be added. Bruce must hit both targets, so that he can pass to the next round.

Similarly, in the Ὧ-th round, the targets in the previous ὯĬ1 rounds will appear, and a new target is

added. Bruce can pass to the next round only if he can make a shot to hit all targets in this round.

Bruce has hacked the game and gets the locations of all targets. He wants to know the maximum

number of rounds he can successfully pass. It is possible that Bruce can win the game, in which case

there are no more rounds to pass after that.

Input

The first line of input will consist of one integer, ὔ ρ ὔ ρππ πππȟ the number of rounds in the

game. Each of the following ὔ lines will consist of three integers, ὼ π ὼ ρπω, ώ and

ώ π ώ ώ ρπω, which are the target Ὥ's horizontal position, the low endpoint, and t he

high endpoint, respectively.

Output

Output one integer, the maximum number of rounds Bruce can pass.

Examples

 Input Output
5 3

2 8 12

5 4 5

3 8 10

6 2 3

1 3 7

Explanation:

The sample case is as shown in the following figure:

Time and memory limit: 4s/ 256MB

Solution and analysis:

First of all, letõs think what is an arrow in this problem. Every arrow is some parabola ώ ὃὼ ὄὼ

ὅ. And to be an arrow this parabola must satisfy that ὃ π and it passes through πȟπ. From the

second condition, we have that π π π ὅ ὅ π. So, every arrow is a parabola

 ώ ὃὼ ὄὼ.

Letõs consider a segment ὼȟώȟώ ȟώ ώ and letõs think when our parabola intersects this segment.

Then, it needs to be satisfied that

ὃὼ ὄὼ ώ Ǫ ὃὼ ὄὼ ώ.

Letõs consider our coefficients ὃ and ὄ as two unknown variables. Then, there is a parabola which

intersects all the segments, if a linear programming on this two variables and corresponding

inequalities for each segment has a solution. After that, we can just do a binary search to get an answer

to the original problem.

But a linear programming is quite slow for constraints in our problem. But we have only two variables

here, so LP can be solved efficiently because every inequality is a half-plane in Ὑ . So, we just need to

check if a set of half-planes has nonempty intersection. Itõs a well-known problem and can be solved

in ὕὲ ὰέὫ ὲ έὶ ὕὲ (yeah, a randomized algorithm with such expected complexity does exist). Or

we can have a set with half-planes sorted by angle and maintain this set after inserting a new half-

plane. Then our complexity would be ὕὲ ὰέὫ ὲ.

Resource: DMOJ

Solution by:

Name: Vladyslav Hlembotskyi

School: Jagiellonian University , Khmelnytskyi

E-mail: nobikik9@gmail.com

 Problem R2 03: Line Sweep

Preoccupied with coding, you've allowed your room to become qu ite dusty. You'd better sweep it

before your parents find out!

Your room can be represented by a two-dimensional grid of cells, with ὔ rows and ὓ columns. Each

cell either contains a piece of furniture, or is empty and must be swept. At least one cell is empty.

To get the job done, you'll be using a broom, of course - in particular, a linear broom. A linear broom

of length ὢ can cover a vertical line of ὢ consecutive cells. One sweep of the broom consists of placing

it down, and then moving it horizonta lly by any distance. However, at all times during a sweep, the

broom must remain entirely within the boundaries of the room, and all ὢ of the cells it covers must

be empty. All of the cells that the broom moves over during a sweep are then rid of dust.

The bigger the better, so you'd like to purchase a broom of the largest size possible such that it's

possible to sweep your entire room with it. Your room is completely swept once every empty cell has

been involved in at least one sweep of the broom. After deciding on the size of your broom, you'd

also like to minimize the number of sweeps required to get the job done.

Input

The first line of input contains three integers ὔȟὓ and Ὂ, which are the number of rows, columns and

pieces of furniture respectively ρ ὔ ςπππȠ ρ ὓ ςπππȠ ρ Ὂ ὔ ὓz Ȣ

The next Ὂ lines contain values ὶȟὧȟρ ὶ ὔȟρ ὧ ὓ which is the row and column position

of furniture. No two pieces of furniture will be at the same coordinates.

Output

The output is composed of two numbers. The first line contains the integer width of the largest broom

that can be purchased. The second line contains the number of sweeps required to sweep all empty

cells.

Examples

 Input Output
5 7 2 2

3 4 4

5 7

Time and memory limit: 2s/ 256MB

Solution:

This problem can be solved easily by using greedy approach. Letõs find the biggest broom width first.

We initiate two arrays, ό and Ὠ .

όὭὮ represents the distance to the first piece of furniture on the column abov e ὭȟὮȟ and ὨὭὮ is

the distance to the first piece of furniture on the column below ὭȟὮ. The width of the broom ύ is

the minimal value of όὭὮ ὨὭὮ ɀ ρ among all empty cells.

Next up is finding the number of swipes. Notice that the topmost cell of the broom (the tip) will not

pass over the same cell twice and that it will have to pass through some specific cells. We initiate a

new array ὴ ȟ with ὴὭὮ π for all ὭȟὮȢ

If ὴὭὮ ρ, the tip of the broom will have to pass through ὭȟὮ. We will call a cell ὭȟὮ invalid if it

either contains a piece of furniture or lies outside the grid. For each empty cell ὭȟὮȟ we check if the

cell above is invalid. If it is, set the ὴὭὮ ρ.

If the cell below is invalid, set the ὴὭ ɀ ύ ρὮ ρ.

Now we iterate through each row and for each cell ὭȟὮ with ὴὭὮ ρ we extend the tip of the

broom to the right as far as we can, setting ὴὭὮ ρ ρ, ὴὭὮ ς ρ, ê, for each free cell as

long as all of the ύ ɀ ρ cells below are also free. Then we extend the tip of the broom to the left for

each row. After that, we swipe all the cells that we marked using the ὴ array. The number of swipes

is equal to the total number of c ontinuous subsequences of 1s for each row of ὴ .

All of the remaining unswept cells form disjoint rectangular regions for which the number of swipes

is easily calculated. Both time and memory complexities are ὕὲ z άȢ

Resource: DMOJ

Solution by:

Name: Nikola Herceg

School: Faculty of Science and Mathematics, University of Zagreb

E-mail: nikolaherceghr@gmail.com

 Problem R2 04: Mine and Tree

In her spare time, Mine enjoys game shows and mathematics. In particular, she really likes geometry

and graph theory. Today, she is a participant on the popular game show GeomeTree, where

contestants show off their mathematical skills by performing operations on a point in the 2D

coordinate plane, all while on a tree. Mine is in it to win it!

Each contestant is given an undirected graph with ὔ ρ ὔ ρπυ vertices and ὔ ρ edges such

that there is a unique path between every pair of vertices - a tree. On each vertex of the tree, an

operation is written on it. The operation may either be "rotate your point b y — π — σφπ degrees

counterclockwise around the origin", "translate your point by a vector ὨὼȟὨώ

ρπυ ὨὼȟὨώ ρπυȟ or "move the point towards (but not past) another point ὴȟή

ρπυ ὴȟή ρπυ such that the new distance between these points is ὖϷ π ὖ ρππ of the

old distance". Contestants perform ὓ ρ ὓ ρπυ rounds of queries on this tree. Each round,

there are two possible queries the contestant needs to perform.

The first kind of query is when the contestant is given two vertices of the tree όȟὺ ρ όȟὺ ὔ

and a point ὼȟώ ρπυ ὼȟώ ρπυ. The contestant has to move the point from vertex u of the

tree to vertex v of the tree, performing every operation written on the vertices to the point they were

given along the way (including the operations on vertices ό and ὺ). Operations are cumulative, and

you should perform the operations sequentially.

The second kind of query is when the operation on a tree changes. The new operation will still be

either a rotation, translation, or moving operation in accordance with the constraints above.

The first-place prize in the game show is unlimited riches along with a platinum pass to a love hotel

for two. We know which prize Mine is really interested in. However, all the other contestants are writing

programs to play this ridiculously difficult game show for them. Since Mine is in a huge pinch right

now, she has hired you to help her win! You have no choice but to write a program that helps her,

otherwise you will be blasted into pieces by Pumpkin!

Input

All the numbers in the input are integers.

The first line of input will have ὔ and ὓ, separated by a single space.

The next ὔ lines will each have the operation of each vertex of the tree, in order from ρȢȢὔ.

The operation is one of the following:

¶ Ὑ — - rotate by — degrees operation

¶ Ὕ Ὠὼ Ὠώ - translate by ὨὼȟὨώ operation

¶ ὓ ὴ ή ὖ - translate by ὴȟή such that the new distance is ὖϷ of the original distance operation.

The next ὔ ρ lines describe the graph. Each line is a pair of vertices which are connected by an edge

in the graph. There will be no self-loops or duplicate edges, and it is guaranteed that the resulting

graph is a tree.

The next ὓ lines will describe the queries. If the line begins with:

¶ ὗ it will be followed by ό ὺ ὼ ώ, indicating the first kind of query

¶ Ὗ it will be followed by ό and the new operation on vertex ό, in the same format as above,

indicating the second kind of query

Output

For each ὗ query, output t wo space-separated real numbers, the final coordinates of the input point.

Both numbers should be within an absolute or relative error of at most 10 -6.

Examples

Example1:

 Input Output
1 1 1.000000 1.000000

M 4 4 75

Q 1 1 0 0

Example2:

 Input Outp ut
2 3 0.000000 141.421356

R 45

R 135

- 100.000000 - 100.000000

- 141.421356 0.000000

Q 1 1 100 100

Q 1 2 100 100

Q 2 2 100 100

Example3:

 Input Output
5 8 0.000000 0.000000

R 90 - 9.192388 3.535534

T 1 1

R 45

T 3 2

R 0

1 2

2 3

3 4

4 5

Q 1 1 0 0

Q 3 3 - 4 9

U 5 R 180

Q 1 5 1 1

Q 5 1 1 1

U 2 T 3 - 1

Q 2 3 3 5

Q 3 1 13 37

- 1.585786 - 3.414214

- 3.121320 1.707107

1.414214 7.071068

- 34.355339 - 13.970563

Time and memory limit: 5s/ 256MB

Solution and analysis:

Long story short:

All three kinds of operations are affine angle-preserving plane transformations (weõll call such

transformations nice), and a composition of nice transformations is also a nice transformation. This

composition is also associative, so we can preprocess the tree using heavy-light decompo sition, so we

can easily find the composition of the transformations along some path in the tree.

Now for a more detailed solution:

Imagine a triangle on the 2D coordinate plane, with its vertices given in the counter -clockwise (CCW)

order. If we rotate th is triangle around the origin by — degrees (operation 1), the result will also be a

triangle with its vertices in CCW order, similar to the original one. Also, if we translate it (operation 2)

or scale it with respect to some point (operation 3), the result will also be a triangle in CCW order,

similar to the original. So, all three of our operations are nice.

Imagine we have a sequence Ὢ ὪȟὪȟȣȟὪ, Ὢ ὼȟώ Ὢ Ὢ ȣὪ ὼȟώ ȣ of such nice

transformations. To describe the composition of nice transformations, we can simply compute

Ὢ πȟπ and Ὢ ρȟπ . These two points are sufficient to fully describe any nice transformation. To see

why this is true, think of the triangle πȟπȟρȟπȟὼȟώ. It will be mapped by Ὢ to

Ὢ πȟπ ȟὪ ρȟπ ȟὪ ὼȟώ . If we know Ὢ πȟπ ȟὪ ρȟπ , we can reconstruct Ὢ ὼȟώ because these

two triangles are similar, and their vertices are in the same order.

To be able to answer the queries from the task, we need to preprocess the given tree by decomposing

it into a set of vertex-disjoint paths, such that there are ὕὰέὫ ὲ different paths on the path from any

node to some arbitrarily chosen root. This is a well-known technique, and itõs called heavy-light

decomposition (HLD).

After finding this decomposition, we will process every path of the decomposition by building a

segment tree, where each node is a nice transformation, and we will do this in both directions, both

upwards (towards the root) and downwards (away from it). Now the path from any node ό to any

other node ὺ consists of a path from ό towards the root, stopping at some node ύ, and then away

from the root towards ὺ. This òturning pointó ύ is called the lowest common ancestor of ό and ὺ and

can also be found in logarithmic time using appropriate preprocessing.

To answer the first type of query, we find the resulting composition of nice transformations using HLD

and segment tree techniques and apply the resulting transformation to the given point. To a nswer the

second type of query we update the segment tree corresponding to the path which contains the given

node.

The first query type works in ὕÌÏÇὲ and the update query works in ὕὰέὫ ὲ. Preprocessing can be

done in ὕὲ. Time complexity is thus ὕὲ ήÌÏÇὲ. Memory complexity is ὕὲ.

Resource: DMOJ

Solution by:

Name: Ivan StoĢiĻ

School: Faculty of Science , University of Nis

E-mail: ivan100sic@gmail.com

 Problem R2 05: Primitive Pythagorean Pairs

Do you know the Pythagorean theorem? Definitely yes. Do you know about Pythagorean triples?

Maybe not. Do you know primitive Pythagorean pairs? Definitely not, because Bruce has not defined

it yet! Let's start from the Pythagorean triples. A Pythagorean triple consists of three positive integers

ὥȟὦ and ὧ, such that ὥ ὦ ὧ. If ὥ and ὦ are also coprime, the pair ὥȟὦ is named a primitive

Pythagorean pair, like σȟτ. Bruce will tell you how to generate primitive Pythagorean pairs. Given

two positive i ntegers ά and ὲ ά ὲ, if ά and ὲ are coprime and ά ὲ is odd, a primitive

Pythagorean pair ὥȟὦ can be calculated by ὥ ά ὲ and ὦ ςz ά ὲzȢ There are an infinite

number of primitive Pythagorean pairs.

Now Bruce has ὔ cards, such of which has a positive integer ὺὭ ρȟςȟȢȢȢȟὔȢ He wants to pick up a

few cards so that there are no primitive Pythagorean pairs among the selected cards. Could you please

help Bruce to get the total number of different selections? Two selections are different if and only if

one card is in one selection, but is not in the other selection. Bruce has to select at least one card in

each selection.

Input

The first line of input will consist of one integer, ὔ ρ ὔ ρ πππ πππ, the number of cards Bruce

has. The second line of input will consist of ὔ positive integers ὺ ȟὺȢȢὺ, where ὺ ρ ὺ ςππ πππ

or ςπ πππ ὺ ρ πππ πππ for all Ὥ ρȢȢὲ) is the value of card Ὥ ρ Ὥ ὔȢ

Output

Output one integer, th e number of different selections modulo 10 9 + 7.

Examples

 Input Output
4 8

5 12 35 5 2

Explanation

There are two primitive Pythagorean pairs υȟρς and ρςȟσυ. So, there are 8 different selections:

υȟρςȟσυȟυȟυȟσυȟσυȟυȟυȟυȟυȟσυȟυȢ

Time and memory limit: 2s/ 256MB

Solution and analysis

Letõs define Ὃ ὠȟὉ, such that its set of vertices is ὺȟὺȟȣȟὺ and two vertices ὥȟὦ are connected

with a bidirectional edge iff Ѝὥ ὦᶰᴓ and ὥȟὦ ρ. The problem asks for the number of

independent vertex sets in this graph.

First, note that we need to extend our solution to work when ὺȟὺȟȣȟὺ are not unique. For this we

need to find the unique values όȟȣȟό along with their multiplic ities in ὺ. If vertices όȟȣȟό with

multiplicities ὦȟȣȟὦ form an independent set, if we count such sets with multiplicities, the number

is

ς ρ ς ρȣ ς ρ.

Letõs solve a simpler version of the problem: Ὃ is a tree.

Let ὶ be an arbitrarily chosen root. For each vertex ὼ, we will calculate the number of independent

sets, considering only the subtree rooted at ὼ, in two scenarios: if ὼ is a part of such independent set

(Ὠȟ) and if it is not (Ὠȟ). Let ώȟȣȟώ be the children of vertex ὼ. The recurrence relation is

Ὠȟ ς ρ Ὠ ȟ

Ὠȟ Ὠ ȟ Ὠ ȟ

where άόὰὸὼ is the multiplicity of vertex ὼ. The solution for the whole tree is given by ὛέὰὝ Ὠȟ

Ὠȟ. This solution works in linear time.

Letõs make it a bit more complicated: Ὃ is a forest.

If ὝȟȣȟὝ are all trees of the forest, the solution for the forest is ὛέὰὝ ὛzέὰὝ ȣz ὛzέὰὝ , as all

the sets can be chosen independently for each tree.

Now to the actual problem. Our graph is neither a tree, nor a forest, nor a simple cycle, nor are we

sure if it is connected or not . But, we can empirically verify that the difference between the number of

edges and the number of vertices is not too large, in each connected component of any input graph.

The constraints may give a hint: Either all ὺ are no greater than ςπππππ or they are all between ςππππ

and ρπ.

For a general graph, we can find the solution for it by finding its connected components, solving them

independently and multiplying these solutions. So, letõs focus on finding the solution for a connected

graph Ὃ ὠȟὉ.

Imagine we chose a few vertices ὠ, removed them (letõs call that set ὅ), and that we are left with a

forest. Letõs call such a set of vertices a splitting set. For every subset Ὀ of ὅ (there are exactly ςȿȿ of

them), letõs find the number of independent sets in Ὃ such that all vertices in Ὀ appear in those

independent sets and no vertex from ὅ͵Ὀ appears. This can be done by modifying the dynamic

programming approach shown above: For each vertex ό which is adjacent to some vertex in Ὀ, we

force Ὠȟ π, as ό cannot be chosen.

Since we can find the solution for every subset Ὀ of ὅ in linear time in the number of vertices in Ὃ, the

complexity is ὕȿὠȿzςȿȿ. We just need to find a sufficiently small splitting set.

As it turns out, the following algorithm does a good job. It finds a small splitting set of the given

connected graph:

If there is a vertex with degree 0 or 1, remove it from the graph (do not add it to the splitting set Ὓ)

Otherwise, pick a vertex with the highest degree, remove it from the graph and add it to Ὓ.

If there are no vertices left, stop.

To see why Ὓ is a splitting set, add the removed vertices (those not in Ὓ) in reverse order. Each added

vertex will have degree π or ρ and so a cycle cannot be formed.

In practice, this always finds a splitting set of size at most 2 when run on the connected components

of graphs induced on ὠ ρȟȣȟςπππππ and ὠ ςππππȟȣȟρπ.

To further strengthen our solution, we can always use these splitting sets on our input graph, and not

the ones we would find if we ran the algorithm on the input graph, because there is a possibility that

our algorithm would perform poorly (i.e. produce a large splitting set) for some specially constructed

input graph.

Time complexity: ὕὔ ςz . Memory complexity: ὕὔ ὕzρ . The constant factors come from the

properties of input (ὺ ςπππππ or ςππππὺ ρπ). In general, the time complexity is exponential.

Resource: DMOJ

Solution by:

Name: Ivan StoĢiĻ

School: Faculty of Science, University of NiĢ

E-mail: ivan100sic@gmail.com

 Problem R2 06: Periodic Function

Solar cycle predictions are used by various agencies and many industry groups. The solar cycle is

important for determining the lifetime of satellites in low -Earth orbit, as the drag on the satellites

correlates with the solar cycle [...].(NOAA)

http://www.swpc.noaa.gov/products/solar-cycle-progression

Sunspot Number Progression: Observed data through May 2008; Dec 2012; Nov 2014; Jun 2016.

The goal of the problem is to propose a perfect prediction center, with not so weak constraints.

Let us consider periodic functions from ὤ to Ὑ.

For example, Ὢ is a 3-periodic function, with Ὢπ Ὢσ Ὢφ Ὢω τȢ

With a simplified not ation, we will denote Ὢ as τȟφȟχȢ

For two periodic functions (with integral period), the quotient of periods will be rational, in that case

it can be shown that the sum of the functions is also a periodic function. Thus, the set of all such

function s is a vector space over Ὑ.

For that problem, we consider a function that is the sum of several periodic functions all with as period

an integer ὔ at the maximum. You will be given some starting values, and you'll have to find new ones.

Input

On the first line, you will be given an integer ὔ.

On the second line, you will be given integers ώ : the first (0-indexed) ὔ ὔ values of a periodic

function Ὢ that is sum of periodic functions all with as period an integer ὔ at the maximum.

On the third line , you will be given ὔ ὔ integers ὼ.

Output

Print Ὢὼ for all required ὼ. See sample for details.

Examples

 Input
3

15 3 17 2 16 4 15 3 17

10 100 1000 10000 100000 1 000000 10000000 100000000 1000000000

 Output
16 16 16 16 16 16 16 16 16

Explanation

For example, Ὢ can be seen as the sum of three periodic functions: ρπ υȟψ πȟρȟς (with

simplified notations; periods are 1,2 and 3). In that case Ὢρπ ρπρπϷρ υȟψρπϷς

 πȟρȟςρπϷσ ρπ υ ρ ρφ, and so on.

Constraints

ὔ ςυψ

ὥὦίώ ρπ

π ὼ ρπ

Information

You can safely assume output fit in a signed 32bit container. There are 6 input files, with increasing

value of N. Some details ΠὭȟὔ :

ΠπȟὥὶέόὲὨ υπ

ΠρȟὥὶέόὲὨ υπ

ΠςȟὥὶέόὲὨ ρππ

ΠσȟὥὶέόὲὨ ρυπ

ΠτȟὥὶέόὲὨ ςππ

ΠυȟὥὶέόὲὨ ςυπ

Time and mem ory limit: 3s/ 256MB

Solution:

A lot of problems involve experimentation and often, when a solution is found, even when it is simple,

itõs hard to show its correctness. This problem is no exception.

First, letõs rephrase the problem in terms of linear algebra. Let ὲ be fixed throughout the solution. We

are given a vector ὥ of length ὲ as input and ὲ queries, asking us for the value of ώ Ὢὼ for some

integer ὼ as described in the problem statement. The vector is such that it can be represented as a

linear combination of vectors of the form Ὡȟ, where ὩȟὭ ρ if Ὥḳ Ὦ and π otherwise. It can be

shown that every valid starting vector uniquely determines Ὢὼ for all ὼ, although this is also implied

by the problem stat ement.

The main idea is, if we can find some representation of ὥ using a linear combination of vectors Ὡȟ,

we can easily compute Ὢὼ in ὕὲ per query: Ὢὼ В ὧȟ where the coefficients ὧȟ are

such that В В ὧȟὩȟ ὥ.

One approach is to choose values for ὯȟὮ, calculate the arithmetic mean of ὥȟȟὥȟ ȟȣȟὥȟ , where

ή is such that ή ρὯ Ὦ ὲ, and subtract this value from all these values, and add this value to the

coefficient ὧȟ. Note that this transformation is linear and can thus be represented by a matrix ὄȟ, so

we have ὥ ὄȟὥ after applying this transformation.

We repeat this process for some sequence of values ὯȟὮ until ὥ converges to the zero vector. At this

point, the sum В В ὧȟὩȟ is equal to the original vector.

The trick is to find a sequence of values ὯȟὮ such that this process converges quickly. One such

sequence is:

ὲȟπȟὲȟρȟȣ ȟὲȟὲ ρȟὲ ρȟπȟὲ ρȟρȟȣȟὲ ρȟὲ

ςȟȣȟỗὲȾςỘȟπȟỗὲȾςỘȟρȟȣ ȟỗὲȾςỘȟỗὲȾςỘ ɀ ρ

Since this transformation is a sequence of linear transformations, it can be represented by a matrix,

letõs denote it with P. We can verify that every input vector will converge to zero when repeatedly

multiplied with P, by verifying this property only for vectors Ὡȟ. By computing these matrix-vector

products for every ὯȟὮ, it was shown using a computer program that all elements of Ὡȭȟ ὖ z

 Ὡȟ will be less than or equal to ρπ for Ὠ σς, meaning that the input vector will be close enough

to zero after Ὠ σς steps, allowing us to accurately compute Ὢὼ. In fact, we can use far smaller

values of Ὠ, since input data is randomized ð balancing between the time limit and correctness.

This solution has time complexity ὕὨz ὲ and space complexity ὕὲ .

Resource: Sphere Online Judge

Solution by:

Name: Ivan StoĢiĻ

School: Faculty of S cience, University of Nis

E-mail: ivan100sic@gmail.com

 Problem R2 07: Traveling Knight

Your task is simple. A knight is placed at the top left corner of a chessboard having ςὲ rows and ςὲ

columns. In how many ways can it move such that it ends up at a corner after at most Ὧ moves?

Input

The first line contains an integer Ὕ, the number of test cases. Each of the next Ὕ lines contains 2

integers: ὲȟὯ.

Output

Output Ὕ lines, one for each test case, containing the required total number of configurations.

Since the answer can get very big, output it modulo ρπππππχ.

Examples

 Input Output
3 1

2 1 5

2 2

3 3

7

Constraints

ρ Ὕ ρππ

ς ὲ ςτ

ρ Ὧ ρπ

Time and memory limit: 1s/ 512MB

Solution and analysis

At its heart, this is a simple matrix exponentiation problem, but since there are only 23 different

possible matrices itõs possible to speed up the usual ὕὲÌÏÇὯ algorithm with some precomputation.

1. Generating the matrix

The most straightforward approach is to just consider the chessboard as a graph with τὲ nodes(which

are chessboard squares) with an edge between two nodes whenever a knight can hop between

corresponding squares in one move. Since the knight can stop at the corner before he made all Ὧ

moves, an additional node is needed in our graph with an incoming edge from every corner and also

an edge from this node to itself.

Because of chessboard and knight moves symmetry, we can reduce the size of our graph. Namely,

instead of squareõs row/column we can only store its distance to the nearest horizontal/vertical side

of the board (for example, ÍÉÎ ὶȟςὲ ρ ὶ instead of ὶ). Another observation is that squares ὼȟώ

and ώȟὼ are also symmetrical so, finally, the set of nodes in our graph is ὼȟώȿπ ὼ ώ ὲ plus

one additional node described earlier. This gives us a square matrix of order ρ, which is just

301 for ὲ ςτ.

2. Exponentiating the matrix

From now on let ὔ denote the order of the square matrix ὃ, and the task is to find ὃὺ where ὺ is

some vector of order ὔ(with ὃ and ὺ fixed and known beforehand). The usual òexponentiation by

squaringó approach works in ὕὔ ÌÏÇὯ which is too slow.

By CayleyðHamilton theorem , ὃ В ὧὃ, where coefficients ὧ can be found from characteristic

polynomial of ὃ. Of course finding characteristic polynomial is hard, but since there are only 23

possible matrices, we can precompute all these polynomials(using Mathematica, NumPy or writing

your own program to do it) a nd put them into our code directly. Of course, we are only interested in

all there coefficients modulo ρπ χ.

Now, letõs use an idea similar to binary exponentiation to find ὧȟȟὧȟȟȣȟὧȟ such that ὃ

В ὧȟὃ in ὕὔ ÌÏÇὯ time. For π Ὧ ὔ this is trivial: ὧȟ ρ and the rest of them are zeroes.

For ςὯ ὔ ὃ ὃ В ὧȟὃ В Ὠὃ where Ὠ can be found with polynomial

multipl ication in ὕὲ . This is almost what we needed but there are ςὔ ρ coefficients instead of ὔ.

Time to use our precomputed values! We can get rid of the leading coefficient Ὠὃ while Ὦ ὔ by

rewriting it as Ὠὃ ὨВ ὧὃ . We repeat this process for ςὔ ςȟςὔ σȟȣȟὔ , each of ὔ

ρ steps takes ὕὔ time so in total it also takes ὕὔ time. For ςὯ ρ ὔ ὃ ὃ ὃ

В ὧ ȟὃ so we proceed similarly but we only need to get rid of ὃ , so this case only takes ὕὔ

time.

Now we can write ὃὺ В ὧȟὃὺ. So the only thing left to do is precompute ὃὺ for Ὥ

πȟρȟȣȟὔ ρ, which can be done in ὕὔ (by multiplying matr ix by vector ὔ times). Unlike

characteristic polynomials, this precomputation can be done during your program execution.

All in all, this solution takes ὕὔ preprocessing time for each matrix and ὕὔ ÌÏÇὯ time for each

test.

Resource: Sphere Online Judge

Solution by:

Name: Mi khail Mayoro v

School: Perm State University, Russia

E-mail: mmaxio@gmail.com

 Problem R2 08: Delivery Game

It's time to play. A group of students are about to play a game, this particular game consist s of a group

of students disposed on a line and a delivery point at the end of this line. The first student of the line

has a package, so the goal of this game is simple: the package must be delivered to the delivery point

(easy, isn't it?). The game starts with the fir st student (the one with the package) running to the next

student on the line; once he reaches the next student, he can either keep going to the next student

on the line or delivery the package to that student, and let him continue the way. This process repeats

all along the way. Now the interesting part: every student has preparation time ὖὭ (minutes required

to take the package, put it in his knapsack, and get ready to leave) and a travel time ὝὭ (minutes

required to travel a single meter). The students want to know the minimum time needed to delivery

the package.

Input

The datasets will consist of a number ρ ὔ ρ πππ πππ the number of students in the line. Then

follow ὔ lines containing three integers ὈὭȟὖὭ and ὝὭȟρ ὈὭȟὖὭȟὝὭ ρ πππ πππ denoting the

distance in meters to the delivery point, the preparation time in minutes and the travel time in minutes

of the Ὥ-th student. Students are given in order (i.e. the first student in the dataset is the one with the

package and the farthest to the delivery point).

Output

Print the minimum number of minutes needed to complete the delivery.

Examples

 Input Output
3 12

5 3 2

4 3 1

1 2 1

Time and memory limit: 3s/ 64MB

Solution:

We will use dynamic programming to solve this pr oblem. Let ὨὴὭ denote the minimum time required

to reach the Ὥ-th student.

ὨὴὭ άὭὲ ὨὴὯ ὖὯ ὈὯ ὈὭ z ὝὯ ȟὯ Ὥ

Now, we can easily compute these values in ὕὲ time complexity, however, that is far too slow. Letõs

consider a different approach and write the previous relation a little differently:

ὨὴὭ άὭὲ ὥὯ z ὈὭ ὦὯ ȟὯ Ὥ, where

ὥὯ ὝὯȟὦὯ ὨὴὯ ὖὯ ὈὯ z ὝὯ.

This is a well-known problem of maximi zing linear equations, so we will solve it using an envelope.

However, the problem is that we cannot construct it all at once. There are several different approaches

to this, and I will describe two of them.

First, we will keep these lines stored by their increasing coefficient ὥὯ in a balanced binary tree

structure. We need to support the following operations: insert a line in the structure while maintaining

the envelope and querying for the minimum. Because we only insert lines, once a line is no longer

contained in the envelope, it will never again be contained. Thus, after inserting a line, we only need

to remove some of the neighboring lines in the tree. Querying can be done with a simple binary search

on the tree. This gives an overall time complexity of ὕὲ ὰὫ ὲ

The second approach is somewhat more complex, but more beautiful in my opinion. We will use divide

and conquer in the following way: recursively solve the left half, make all transitions from the left to

the right half, recursively solve the right half. Now in each stage of the algorithm, we need to make a

static envelope from the lines on the left and query it with all the values on the right. If we use merge

sort to avoid slow sorting in every step and make all the queries using two pointers, we can achieve

the same time complexity of ὕὲ ὰὫ ὲ.

Resource: Caribbean Online Judge

Solution by:

Name: Domogoj Bradac

School: University of Zagreb

E-mail: domagoj.bradac@gmail.com

 Problem R2 09: [Challenge] Lawnmower

Dorian the Caretaker hates mowing the lawn. There is nothing worse than listening to this

monotonous purr of the engine and inhaling its fumes for a few hours solid. Unfortunately, it just so

happens that cutting the grass on the local millionaire's golf course is his on ly duty.

But, fortunately for Dorian, salvation is here! His employer bought the newest miracle of engineering

- Super Mower 3000, which can be remotely controlled. No more monotony, no more sweat and toil!

Dorian will be finally fired, so he can start something he wanted to start for a long time - the search

for a new job. No proper education and lack of prospects will only make it more fun.

Super Mower 3000 has to be programmed beforehand, though. The golf course is a rectangle with n

rows and m columns, which consists of square-shaped fields 1-meter wide. Some fields contain just

grass, other fields have obstacles on them. Super Mower can instantly cut the grass just by being on

the field. It cannot enter the field with an obstacle. Every grass-covered field is reachable from every

other grass-covered field.

Initially, Super Mower stands on the field in the first column of the first row, facing right. It executes a

sequence of commands afterwards. There are four different commands:

¶ ὔ - move one field forw ards

¶ ὡ - move one field backwards

¶ ὒ - rotate 90 degrees left

¶ ὖ - rotate 90 degrees right

Moving one field forwards or backwards takes one second. Rotations are slower and take three

seconds each.

Given a description of the golf course, devise the sequence of commands that will make Super Mower

mow the whole lawn (that is, it will visit every grass-covered field), while taking the least amount of

time.

Input

The first line contains a single integer ὸ, denoting the number of testcases. ὸ ρπ. The descriptions

of the testcases follow.

First line of the description consists of two integers ὲ and ά ς ὲȟά ρππȟ denoting the size of

the golf course. Then ὲ lines follow, each containg ά characters. The Ὦ-th character in the Ὥ-th line

describes the field in the Ὥ-th row and Ὦ-th column. "." (a dot) indicates a grass covered field, "#"

indicates an obstacle. It is guaranteed that the first field is grass-covered.

Output

For each test case print one line with a string containing only letters Ȱὔȱȟȱὒȱȟȱὡȱ or ͼὖͼȟ denoting the

sequence of commands for Super Mower 3000 to execute. The sequence should make Super Mower

visit every grass-covered field, without entering a field with an obstacle or going outside the course,

and it cannot be longer than ρφzὲz ά commands.

Examples

 Input Output
2

4 7

.......

.##.##.

.##.##.

.......

4 8

........

...#.###

.#.#....

.#.#....

NNNNNNPNNNPNNNPNNWWLNNNPNN

NNNNNNNWWWPNNNLNNNLNLNNNPNNLNNLNNNWWPNNLNN

Scoring

If the sequence of commands satisfies all the conditions given in the problem statement, and it takes

ὼ seconds to execute, it is worth
ᶻ

 points. Overall score is equal to the sum of individual scores.

Explanation

The first sequence takes 36 seconds to execute, the second sequence takes 60 seconds. Then, your

score is σφȾτz χ φπȾτz ψȟ so about σȢρφ.

Time and memory limit: 5s/ 512MB

Solution:

As a first solution, we can use a dfs (Depth-first search) algorithm to find path and visit all grass -

covered fields.

In dfs-tree all nodes except one have a father. So, when Super Mario is located on the grass-covered

field which doesnõt have unvisited grass-covered neighbor, dfs breaks and returns to his father etc.,

until we can move to the unvisited grass-covered field.

Why is it important to know what is the father of every field? Because we have to reconstruct the path

from dfs algorithm.

We have 4 sides: right, down, left and up. Letõs assign numbers to them.

¶ Right ð 0;

¶ Down ð 1;

¶ Left ð 2;

¶ Up ð 3.

https://en.wikipedia.org/wiki/Depth-first_search

When we arrive on the field ὭȟὮ from ὭȟὮ ρȢ We know that we came to current field from the left

side, and then father ὭὮ is on the left side, so we can assign father ὭὮ ς ὰὩὪὸ.

Of course, these could be any other numbers.

Now that we have a skeleton of our solution we can optimize it:

Cut the road:

When we get stuck in dfs on a grass-covered filed which has no unvisited grass-covered neighbors,

instead of returning through ancestors in dfs we can use Dijkstraõs algorithm to find the cheapest path

for the field which has unvisited neighbor. We save a lot of commands this way.

Combine:

 In dfs algorithm we usually ask:

 If the left is free dfs(left)

 If the right is free dfs(right) etc.

For some test cases, it is better to ask first for right field and then for left. So, we can combine a lot of

dfs searches and use the best for our solution. Also, we can choose the order of fields by comparing

the size of their dfs trees. When we start a dfs algorithm from some field, we can define the size of the

dfs tree for current cell as a number of fields that are visited.

Cut the string:

 This is a small optimization, but in challenge problems, every optimization is welcome.

At small solutions, we can cut some substring in the solution and check whether weõll visit all the fields,

then update the solution.

Resource: Sphere Online Judge/ PIZZA 2015

Solution by:

Name: Balsa KneĤeviĻ

School: School of Electrical Engineering

E-mail: balsak97@gmail.com

https://pizza.natodia.net/

 Problem R2 10: Terminus Est

Est is a super cute sword spirit that belongs to Kamito. One day, she goes for a walk with him in a

spirit forest in Astral Zero. Est quickly realizes that this forest has many clearings and paths, and the

clearings and paths actually form a tree structure.

There are N clearings numbered from 1 to ὔ and ὔ ρ paths in the spirit forest, and between every

pair of clearings there is a unique simple path. In every clearing, there may be a demon spirit, which

Est will immediately defeat as she is far superior than these lowly demon spirits. Est is eager to defeat

some demon spirits, but there is a problem: she doesn't know which clearing she is in right now

(although she memorized the layout of the forest). For lack of a better option, Est decides to just keep

moving from her current location without walking over the same path more than once and fight every

demon spirit she meets along the way. Est may decide to stop at a clearing at any time during this

journey. The path will visit at least two clearings, including the one Est starts at.

A path between clearings Ὥ and Ὦ Ὥ Ὦ is considered good if for two parameters ὥ and ὦ

π ὥ ὦ ὔ there are at least a demon spirits and at most b demon spirits on the simple path

between i and j. Est will enjoy herself the most if the path she chooses is a good path. Thus, she has

ὗ questions: given parameters ὥ and ὦ, what is the probability that the path she takes is a good path?

Est is quite kind, and as such, she does not want you to deal with incredibly small real numbers.

Therefore, if p is the probability, you should output ὴz ὔᶻ . This comes from the fact that the

probability of choosing a g ood path is the number of good paths divided by the total number of

paths. Since Est does not know where she is initially, we should assume each clearing has a chance

of being Est's initial clearing. Since Est's will cannot be predicted by mere humans, we should also

assume each clearing that is not the initial clearing has a chance of being chosen as the final

clearing where Est stops. In other words, you will just need to output the number of distinct good

paths in the spirit forest for every ὥ and ὦ Est asks you to. In particular, a path is considered distinct

from another path if one path visits a clearing that the other path doesn't. Therefore, there are ὔᶻ

 distinct paths in total.

Note: Demon spirits don't move from the ir initial clearings.

Input

The first line of input will have ὔ.

The second line of input will have ὔ space-separated digits, either 0 or 1. If and only if the Ὥ-th number

is 1, the Ὥ-th clearing has a demon spirit.

The next ὔ ρ lines describe the spirit forest. Each line in the form u v, which means the clearings u

and v are directly connected.

The ὔ ς-th line with have ὗ.

